|
|
1 | (24) |
|
1.1 Introduction: General Remarks |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
3 | (7) |
|
1.3.1 Kinds of Mathematical Models |
|
|
5 | (1) |
|
1.3.2 Models of Economic Growth |
|
|
6 | (1) |
|
1.3.3 Models in Public Health and Epidemics |
|
|
7 | (2) |
|
1.3.4 Graphical Representations of Continuous Models |
|
|
9 | (1) |
|
1.3.5 Computational Tractability |
|
|
10 | (1) |
|
1.4 Discrete-Event Models |
|
|
10 | (2) |
|
|
11 | (1) |
|
1.4.2 Discrete-Event Specification Formalism (DEVS) |
|
|
11 | (1) |
|
1.5 Experimental Frames and Model Validity |
|
|
12 | (5) |
|
1.5.1 Two Capacitors Circuit |
|
|
15 | (1) |
|
1.5.2 Birth-and-death Process |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.7 Uncertainty and Randomness |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.9 Questions and Answers |
|
|
18 | (7) |
|
|
21 | (4) |
|
2 Continuous System Models |
|
|
25 | (56) |
|
|
25 | (1) |
|
|
26 | (3) |
|
2.2.1 General Classification |
|
|
28 | (1) |
|
|
29 | (1) |
|
2.4 Ordinary Differential Equations and Models of Systems with Concentrated Parameters |
|
|
30 | (2) |
|
|
32 | (6) |
|
2.5.1 Stability of Linear Models |
|
|
34 | (1) |
|
2.5.2 Routh--Hurwitz Stability Criterion |
|
|
34 | (2) |
|
|
36 | (2) |
|
2.6 Nyquist Plot and Stability Criterion |
|
|
38 | (1) |
|
2.7 Analog Computer Models |
|
|
39 | (1) |
|
|
40 | (5) |
|
|
44 | (1) |
|
2.9 Non-linear Models and Stability |
|
|
45 | (6) |
|
|
46 | (1) |
|
|
46 | (1) |
|
2.9.3 Asymptotic Stability |
|
|
46 | (1) |
|
|
47 | (4) |
|
|
51 | (1) |
|
2.11 Example: ODE Model of a Car Suspension |
|
|
52 | (4) |
|
2.12 Graphical Representations of Continuous Models |
|
|
56 | (9) |
|
2.12.1 Block Diagrams and Signal Flow Graphs |
|
|
56 | (2) |
|
2.12.2 Mason's Gain Formula |
|
|
58 | (3) |
|
|
61 | (2) |
|
2.12.4 Example of Bond Graph |
|
|
63 | (1) |
|
2.12.5 The Causality and DYMOLA |
|
|
64 | (1) |
|
2.13 Models with Distributed Parameters, Partial Differential Equations |
|
|
65 | (5) |
|
2.13.1 PDE Solution Algorithms |
|
|
65 | (3) |
|
2.13.2 Finite Element Model |
|
|
68 | (1) |
|
2.13.3 Example: Jet Takeoff Vibrations |
|
|
69 | (1) |
|
|
70 | (1) |
|
2.15 Questions and Answers |
|
|
70 | (11) |
|
|
78 | (3) |
|
3 Differential Inclusions, Uncertainty, and Functional Sensitivity |
|
|
81 | (26) |
|
3.1 Introduction, Some Definitions |
|
|
81 | (2) |
|
3.2 Differential Inclusions |
|
|
83 | (1) |
|
|
83 | (2) |
|
3.4 Differential Inclusions and Control Systems |
|
|
85 | (2) |
|
3.4.1 Uncertainty Treatment |
|
|
86 | (1) |
|
3.5 Functional Sensitivity |
|
|
87 | (1) |
|
3.6 Differential Inclusion Solver |
|
|
88 | (7) |
|
3.6.1 Example: A Second-Order Model |
|
|
93 | (2) |
|
3.7 Discrete Differential Inclusions |
|
|
95 | (6) |
|
3.7.1 Reachable Set, Optimal Trajectory |
|
|
96 | (2) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (1) |
|
3.9 Questions and Answers |
|
|
102 | (5) |
|
|
103 | (4) |
|
4 Functional Sensitivity Applications |
|
|
107 | (34) |
|
|
107 | (1) |
|
4.2 Functional Sensitivity |
|
|
108 | (2) |
|
4.2.1 Differential Inclusions |
|
|
108 | (1) |
|
4.2.2 Sensitivity Analysis |
|
|
108 | (2) |
|
4.3 Differential Inclusion Solver |
|
|
110 | (1) |
|
4.4 Example: The Lotka--Volterra Model |
|
|
111 | (2) |
|
|
113 | (2) |
|
4.6 Functional Sensitivity of the V/f Speed Control of Induction Motor |
|
|
115 | (6) |
|
4.6.1 Comparison with the Classical Sensitivity Analysis |
|
|
119 | (2) |
|
4.7 PID Anti-Windup Control |
|
|
121 | (6) |
|
4.8 Vehicle Horizontal Movement |
|
|
127 | (3) |
|
4.9 Marketing Sensibility and Reachable Sets |
|
|
130 | (7) |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (1) |
|
4.11 Questions and Answers |
|
|
138 | (3) |
|
|
138 | (3) |
|
5 Attainable Sets in Flight Control |
|
|
141 | (10) |
|
|
141 | (1) |
|
5.2 Control and Reachable Sets |
|
|
142 | (5) |
|
|
142 | (2) |
|
|
144 | (3) |
|
|
147 | (1) |
|
5.4 Questions and Answers |
|
|
147 | (4) |
|
|
148 | (3) |
|
6 Modeling, Simulation, and Optimization |
|
|
151 | (20) |
|
|
151 | (2) |
|
|
153 | (3) |
|
|
156 | (1) |
|
|
157 | (6) |
|
6.5 Computer Implementation: Simulation and Optimization |
|
|
163 | (4) |
|
|
167 | (1) |
|
6.7 Questions and Answers |
|
|
167 | (4) |
|
|
169 | (2) |
|
|
171 | (18) |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
174 | (3) |
|
|
176 | (1) |
|
7.4 Discrete Event Specification Formalism (DEVS) |
|
|
177 | (2) |
|
7.4.1 A Remark on Ambiguity |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
7.6 Distributed Simulation Models |
|
|
180 | (2) |
|
|
182 | (1) |
|
7.8 Questions and Answers |
|
|
182 | (7) |
|
|
185 | (4) |
|
8 Self-Organization, Organization Dynamics, and Agent-Based Model |
|
|
189 | (18) |
|
|
189 | (3) |
|
|
192 | (5) |
|
|
195 | (2) |
|
8.3 BLUESSS Simulation Package |
|
|
197 | (1) |
|
|
198 | (3) |
|
|
201 | (2) |
|
8.6 Questions and Answers |
|
|
203 | (4) |
|
|
204 | (3) |
|
9 The Space of Models, Semi-Discrete Events with Fuzzy Logic |
|
|
207 | (22) |
|
|
207 | (2) |
|
9.1.1 Distance Between Models |
|
|
208 | (1) |
|
9.2 Strictly Discrete Event Model |
|
|
209 | (2) |
|
9.3 Finite-Time Event Model |
|
|
211 | (7) |
|
|
212 | (2) |
|
9.3.2 Semi-Discrete Model Specification |
|
|
214 | (3) |
|
|
217 | (1) |
|
|
218 | (6) |
|
9.4.1 Example 1: One Server |
|
|
218 | (3) |
|
9.4.2 Example 2: Two Servers |
|
|
221 | (2) |
|
9.4.3 Example 3: A Battlefield |
|
|
223 | (1) |
|
9.5 Singularity of the Exact DES Models |
|
|
224 | (2) |
|
|
226 | (1) |
|
9.7 Questions and Answers |
|
|
226 | (3) |
|
|
227 | (2) |
|
|
229 | (8) |
|
10.1 Introduction: The Language of Categories |
|
|
229 | (5) |
|
|
230 | (3) |
|
10.1.2 Simultaneous Events |
|
|
233 | (1) |
|
|
234 | (1) |
|
10.3 Questions and Answers |
|
|
234 | (3) |
|
|
235 | (2) |
|
11 Fuzzy Time Instants and Time Model |
|
|
237 | (10) |
|
|
237 | (1) |
|
11.2 The Fuzzy Time Instant |
|
|
238 | (6) |
|
|
242 | (2) |
|
|
244 | (3) |
|
|
245 | (2) |
|
12 Uncertain Future, Reversibility and the Fifth Dimension |
|
|
247 | (32) |
|
|
247 | (1) |
|
|
247 | (2) |
|
12.3 Differential Inclusion Solver |
|
|
249 | (2) |
|
12.4 Solving the Ideal Predictor Problem. Feedback From the Future |
|
|
251 | (7) |
|
12.4.1 Example 1: A Linear Model |
|
|
252 | (2) |
|
12.4.2 Example 2: A Non-Linear Model |
|
|
254 | (1) |
|
12.4.3 Example 3: A Control System |
|
|
254 | (4) |
|
|
258 | (3) |
|
12.5.1 Irreversibility of Differential Inclusions |
|
|
259 | (2) |
|
12.6 Encapsulated Universe and the Fifth Dimension |
|
|
261 | (18) |
|
|
262 | (1) |
|
|
263 | (1) |
|
12.6.3 The Metric Structure |
|
|
264 | (1) |
|
12.6.4 Linear Vector Space Operators |
|
|
265 | (2) |
|
12.6.5 Local Ball and Local Observer |
|
|
267 | (1) |
|
12.6.6 Velocity Superposition |
|
|
268 | (1) |
|
12.6.7 Particle Movement and a Small Bang |
|
|
269 | (2) |
|
12.6.8 Adding the Time Dimension |
|
|
271 | (1) |
|
12.6.9 Uncertainty and Traveling Beyond the Infinity |
|
|
272 | (3) |
|
12.6.10 The Fifth Dimension |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (2) |
Index |
|
279 | |