Preface |
|
xi | |
|
|
1 | (36) |
|
1.1 Categorical and Limited Response Variables |
|
|
1 | (3) |
|
1.1.1 A Brief History of CLRV Models |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.2 Approaches to Regression Analysis |
|
|
4 | (4) |
|
1.2.1 Frequentist Approach to Regression Modeling |
|
|
4 | (1) |
|
1.2.2 Bayesian Approach to Regression Modeling |
|
|
4 | (1) |
|
1.2.2.1 The Example of COVID-19 |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.2.3.2 Informative, Non-informative, and Other Priors |
|
|
7 | (1) |
|
1.2.4 Markov Chain Monte Carlo (MCMC) |
|
|
8 | (1) |
|
|
8 | (13) |
|
|
9 | (1) |
|
1.3.2 Use R as Calculator |
|
|
10 | (1) |
|
1.3.3 Set Up Working Directory |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.3.8 Examine Individual Variables |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.3.11 Create Dummy Variables and Check Transformation |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
1.3.14 Create Ordinal Variables |
|
|
18 | (1) |
|
1.3.15 Check Transformation |
|
|
18 | (1) |
|
1.3.16 Drop Missing Cases |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.4 Review of Linear Regression Models |
|
|
21 | (16) |
|
1.4.1 A Brief History of OLS Rregression |
|
|
21 | (1) |
|
1.4.2 Main Results of OLS Regression |
|
|
22 | (1) |
|
1.4.2.1 OLS Estimator and Variance-Covariance Matrix |
|
|
23 | (1) |
|
1.4.3 Major Assumptions of OLS Regression |
|
|
23 | (1) |
|
1.4.3.1 Zero Conditional Mean and Linearity |
|
|
24 | (1) |
|
1.4.3.2 Spherical Disturbance |
|
|
24 | (1) |
|
|
24 | (1) |
|
1.4.3.4 Nonstochastic Covariates |
|
|
25 | (1) |
|
|
25 | (1) |
|
1.4.4 Estimation and Interpretation |
|
|
25 | (6) |
|
1.4.5 A Brief Introduction to Stan and Other BUGS-like Software |
|
|
31 | (1) |
|
1.4.6 Bayesian Approach to Linear Regression |
|
|
32 | (5) |
|
|
37 | (50) |
|
|
37 | (3) |
|
2.1.1 A Brief History of Binary Regression |
|
|
37 | (1) |
|
2.1.2 Linear Probability Regression |
|
|
38 | (2) |
|
2.2 Maximum Likelihood Estimation |
|
|
40 | (9) |
|
2.2.1 Simple MLE Examples |
|
|
41 | (4) |
|
2.2.2 MLE for Binary Regression |
|
|
45 | (1) |
|
2.2.3 Numerical Methods for MLE |
|
|
46 | (2) |
|
2.2.4 Normality, Consistency, and Efficiency |
|
|
48 | (1) |
|
2.2.5 Nonlinear Probability |
|
|
49 | (1) |
|
2.3 Hypothesis Testing and Model Comparisons |
|
|
49 | (13) |
|
2.3.1 Wald, Likelihood Ratio, and Score Tests |
|
|
51 | (4) |
|
2.3.1.1 Graphical Comparison of Wald, LR, and Score Tests |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
59 | (2) |
|
2.3.4 Goodness of Fit Measures: The Hosmer-Lemeshow Test |
|
|
61 | (1) |
|
2.3.5 Limitations of NHST |
|
|
61 | (1) |
|
2.4 Interpretation of Results |
|
|
62 | (12) |
|
2.4.1 Precision Estimates |
|
|
63 | (1) |
|
2.4.1.1 End-Point Transformation |
|
|
64 | (1) |
|
|
64 | (1) |
|
2.4.1.3 Re-sampling Methods |
|
|
64 | (1) |
|
2.4.2 Interpretation Based on Predictions |
|
|
65 | (3) |
|
2.4.3 Interpretations Based on Effects |
|
|
68 | (1) |
|
|
68 | (1) |
|
2.4.3.2 Discrete Rates of Change in Prediction |
|
|
69 | (2) |
|
|
71 | (2) |
|
|
73 | (1) |
|
2.5 Bayesian Binary Regression |
|
|
74 | (13) |
|
2.5.1 Priors for Binary Regression |
|
|
75 | (3) |
|
2.5.2 Bayesian Estimation of Binary Regression |
|
|
78 | (4) |
|
2.5.3 Bayesian Post-estimation Analysis |
|
|
82 | (2) |
|
2.5.4 Bayesian Assessment of Null Values |
|
|
84 | (3) |
|
|
87 | (50) |
|
|
88 | (28) |
|
3.1.1 Types of Ordinal Measures and Regression Models |
|
|
88 | (1) |
|
3.1.2 A Brief History of Ordered Regression Models |
|
|
89 | (1) |
|
3.1.3 Cumulative Regression |
|
|
89 | (1) |
|
3.1.3.1 Model Setup and Estimation |
|
|
89 | (4) |
|
3.1.3.2 Hypothesis Testing and Model Comparison |
|
|
93 | (2) |
|
|
95 | (3) |
|
3.1.4 Testing the Proportional Odds/Parallel Lines Assumption |
|
|
98 | (3) |
|
3.1.5 Partial, Proportional Constraint, and Non-parallel Models |
|
|
101 | (5) |
|
3.1.6 Continuation Ratio Regression |
|
|
106 | (6) |
|
3.1.7 Adjacent Category Regression |
|
|
112 | (2) |
|
|
114 | (2) |
|
3.2 Extentions to Classical Ordered Regression Models |
|
|
116 | (7) |
|
3.2.1 Inflated Ordered Regression |
|
|
116 | (4) |
|
3.2.2 Heterogeneous Choice Models |
|
|
120 | (2) |
|
3.2.3 General Guidelines for Model Selection |
|
|
122 | (1) |
|
3.3 Multinomial Regression |
|
|
123 | (7) |
|
3.3.1 Multinomial Logit Regression |
|
|
123 | (6) |
|
3.3.2 Multinomial Probit Regression |
|
|
129 | (1) |
|
3.4 Bayesian Polytomous Regression |
|
|
130 | (7) |
|
3.4.1 Bayesian Estimation |
|
|
130 | (1) |
|
3.4.1.1 Bayesian Parallel Cumulative Ordered Regression |
|
|
131 | (1) |
|
3.4.1.2 Bayesian Non-Parallel Cumulative Ordered Regression |
|
|
132 | (2) |
|
3.4.1.3 Bayesian Stereotype Logit Model |
|
|
134 | (3) |
|
|
137 | (32) |
|
|
137 | (2) |
|
4.2 Basic Count Regression Models |
|
|
139 | (18) |
|
4.2.1 Explore the Count Response Variable |
|
|
140 | (1) |
|
4.2.2 Plot Observed vs. Predicted Count Proportions |
|
|
141 | (1) |
|
|
142 | (8) |
|
4.2.4 Contagion, Heterogeneity, and Over-Dispersion |
|
|
150 | (2) |
|
4.2.5 Quasi-Poisson Regression |
|
|
152 | (1) |
|
4.2.6 Negative Binomial Regression |
|
|
152 | (5) |
|
4.3 Zero-Modified Count Regression |
|
|
157 | (5) |
|
4.3.1 Zero-Truncated Models |
|
|
158 | (1) |
|
|
159 | (1) |
|
4.3.3 Zero-Inflated Models |
|
|
160 | (2) |
|
4.4 Bayesian Estimation of Count Regression |
|
|
162 | (7) |
|
4.4.1 Bayesian Estimation of Negative Binomial Regression |
|
|
162 | (5) |
|
4.4.2 Bayesian Estimation of Zero-Inflated Poisson Regression |
|
|
167 | (2) |
|
|
169 | (36) |
|
|
169 | (3) |
|
5.1.1 Censoring and Truncation |
|
|
170 | (2) |
|
|
172 | (2) |
|
5.2.1 Time and Survival Function |
|
|
172 | (1) |
|
|
173 | (1) |
|
5.3 Descriptive Survival Analysis |
|
|
174 | (6) |
|
5.3.1 The Kaplan-Meier Estimator |
|
|
174 | (3) |
|
|
177 | (3) |
|
5.4 Accelerated Failure Time Model |
|
|
180 | (6) |
|
5.4.1 Exponential AFT Regression |
|
|
181 | (2) |
|
5.4.2 Weibull AFT Regression |
|
|
183 | (3) |
|
5.5 Parametric Proportional Hazard Regression |
|
|
186 | (4) |
|
5.5.1 Exponential PH Regression |
|
|
187 | (1) |
|
5.5.2 Weibull PH Regression |
|
|
188 | (2) |
|
|
190 | (2) |
|
5.7 Testing the PH Assumption |
|
|
192 | (2) |
|
5.8 Bayesian Approaches to Survival Regression |
|
|
194 | (11) |
|
5.8.1 Bayesian Estimation of Weibull PH Model Using rstan |
|
|
195 | (7) |
|
5.8.2 Bayesian Estimation of Survival Models Using sp BayesSurv |
|
|
202 | (3) |
|
|
205 | (52) |
|
6.1 Multilevel Regression |
|
|
205 | (11) |
|
6.1.1 Multilevel Logit Regression |
|
|
206 | (5) |
|
6.1.2 Multilevel Count Regression |
|
|
211 | (3) |
|
6.1.3 Bayesian Multilevel Regression |
|
|
214 | (2) |
|
|
216 | (12) |
|
6.2.1 Average Treatment Effects |
|
|
217 | (1) |
|
6.2.1.1 Average Treatment Effects |
|
|
217 | (1) |
|
6.2.1.2 Average Treatment Effects for the Treated |
|
|
218 | (1) |
|
6.2.1.3 (Strong) Ignorability of Treatment Assumption |
|
|
218 | (1) |
|
6.2.2 Propensity Score Analysis |
|
|
219 | (1) |
|
6.2.2.1 Propensity Score Matching |
|
|
219 | (4) |
|
6.2.2.2 Mahalanobis Distance Matching |
|
|
223 | (1) |
|
|
224 | (2) |
|
6.2.2.4 Coarsened (Exact) Matching |
|
|
226 | (2) |
|
|
228 | (29) |
|
|
229 | (1) |
|
6.3.1.1 Machine Learning and Statistical Learning |
|
|
229 | (1) |
|
6.3.1.2 Supervised Learning and Unsupervised Learning |
|
|
230 | (1) |
|
6.3.1.3 Regression and Classification |
|
|
230 | (1) |
|
6.3.1.4 Training, Validation, and Test |
|
|
230 | (1) |
|
6.3.2 Supervised Learning |
|
|
230 | (1) |
|
6.3.2.1 Regularization: Ridge and Lasso Regression |
|
|
230 | (11) |
|
6.3.2.2 Penalized Binary Logit |
|
|
241 | (2) |
|
6.3.2.3 Decision/Regression Trees |
|
|
243 | (7) |
|
6.3.2.4 Bagging and Random Forests |
|
|
250 | (2) |
|
6.3.2.5 Classification Trees |
|
|
252 | (5) |
Bibliography |
|
257 | (16) |
Index |
|
273 | |