Preface |
|
ix | |
|
|
1 | (36) |
|
|
1 | (13) |
|
|
1 | (2) |
|
1.1.2 Hahn-Banach theorem |
|
|
3 | (1) |
|
1.1.3 Stone-Weierstrass theorem |
|
|
4 | (1) |
|
1.1.4 Banach-Steinhaus theorem |
|
|
5 | (1) |
|
|
6 | (5) |
|
1.1.6 Riesz representation theorem |
|
|
11 | (2) |
|
1.1.7 Geometry of Banach spaces |
|
|
13 | (1) |
|
|
14 | (8) |
|
1.2.1 Basic definitions and spectral properties |
|
|
14 | (6) |
|
1.2.2 Wold decomposition of an isometry |
|
|
20 | (1) |
|
1.2.3 Riesz-Dunford functional calculus |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (13) |
|
1.4.1 Inner and outer functions |
|
|
25 | (3) |
|
1.4.2 Consequences of the inner-outer factorization |
|
|
28 | (2) |
|
1.4.3 The theorems of Beurling and Wiener |
|
|
30 | (1) |
|
|
31 | (1) |
|
1.4.5 Reproducing kernels, Riesz bases and Carleson sequences |
|
|
31 | (3) |
|
1.4.6 Functions of bounded mean oscillation |
|
|
34 | (1) |
|
1.4.7 The Hilbert transform on the unit circle |
|
|
35 | (1) |
|
|
36 | (1) |
|
2 The operator-valued Poisson kernel and its applications |
|
|
37 | (20) |
|
2.1 The operator-valued Poisson kernel |
|
|
37 | (6) |
|
2.2 The H∞ functional calculus for absolutely continuous p-contractions |
|
|
43 | (3) |
|
2.3 H∞ functional calculus in a complex Banach space |
|
|
46 | (4) |
|
2.4 Absolutely continuous elementary spectral measures |
|
|
50 | (7) |
|
|
53 | (1) |
|
|
54 | (3) |
|
3 Properties (An,m) and factorization of integrable functions |
|
|
57 | (46) |
|
3.1 The basis of the S. Brown method |
|
|
57 | (10) |
|
|
57 | (5) |
|
|
62 | (1) |
|
|
63 | (4) |
|
3.2 Factorization of log-integrable functions |
|
|
67 | (14) |
|
3.3 Applications in harmonic analysis |
|
|
81 | (5) |
|
|
86 | (6) |
|
3.4.1 Borelian functional calculus for normal operators |
|
|
86 | (1) |
|
3.4.2 Invariant subspaces for subnormal operators |
|
|
87 | (5) |
|
3.5 Surjectivity of continuous bilinear mapping |
|
|
92 | (11) |
|
3.5.1 A sufficient condition for property (A0) |
|
|
92 | (4) |
|
3.5.2 A sufficient condition for property (A1,0) |
|
|
96 | (3) |
|
|
99 | (1) |
|
|
100 | (3) |
|
4 Polynomially bounded operators with rich spectrum |
|
|
103 | (38) |
|
|
103 | (4) |
|
4.2 C2(T) functional calculus and the Colojoara-Foias theorem |
|
|
107 | (4) |
|
4.2.1 Operators with a C2(T) functional calculus |
|
|
107 | (3) |
|
4.2.2 The Colojoara-Foias, theorem |
|
|
110 | (1) |
|
|
111 | (7) |
|
4.3.1 Zenger's theorem and a factorization result |
|
|
112 | (2) |
|
4.3.2 A stronger version of Zenger's theorem |
|
|
114 | (4) |
|
4.4 Carleson's interpolation theorem |
|
|
118 | (5) |
|
4.5 Approximation using Apostol sets |
|
|
123 | (6) |
|
4.5.1 Approximation of integrable non-negative functions |
|
|
123 | (5) |
|
4.5.2 Approximate eigenvalues |
|
|
128 | (1) |
|
4.6 Invariant subspace results |
|
|
129 | (12) |
|
|
137 | (1) |
|
|
138 | (3) |
|
|
141 | (28) |
|
5.1 Properties of Beurling algebras |
|
|
142 | (4) |
|
5.2 Theorems of Wermer and Atzmon |
|
|
146 | (6) |
|
|
152 | (8) |
|
5.3.1 Davie's functional calculus |
|
|
152 | (4) |
|
|
156 | (4) |
|
5.4 Rational Bishop operators |
|
|
160 | (9) |
|
|
161 | (2) |
|
5.4.2 The lattice of invariant subspaces |
|
|
163 | (4) |
|
|
167 | (1) |
|
|
167 | (2) |
|
6 Applications of a fixed-point theorem |
|
|
169 | (14) |
|
6.1 Operators commuting with compact operators |
|
|
169 | (2) |
|
6.2 Essentially self-adjoint operators |
|
|
171 | (12) |
|
|
171 | (6) |
|
6.2.2 Application to invariant subspaces |
|
|
177 | (3) |
|
|
180 | (1) |
|
|
181 | (2) |
|
|
183 | (30) |
|
7.1 The basic definitions |
|
|
183 | (2) |
|
7.2 Minimal vectors in Hilbert space |
|
|
185 | (1) |
|
7.3 A general extremal problem |
|
|
186 | (6) |
|
7.3.1 Approximation in Hilbert spaces |
|
|
187 | (2) |
|
7.3.2 Approximation in reflexive Banach spaces |
|
|
189 | (3) |
|
7.4 Application to hyperinvariant subspaces |
|
|
192 | (21) |
|
|
192 | (3) |
|
|
195 | (1) |
|
7.4.3 Weighted composition operators |
|
|
196 | (9) |
|
|
205 | (3) |
|
7.4.5 Multiplication operators on Lp spaces |
|
|
208 | (3) |
|
|
211 | (1) |
|
|
211 | (2) |
|
|
213 | (20) |
|
8.1 Construction of universal models |
|
|
213 | (4) |
|
8.2 Bilateral weighted shifts |
|
|
217 | (3) |
|
8.3 Composition operators |
|
|
220 | (13) |
|
8.3.1 Universality of composition operators |
|
|
220 | (4) |
|
8.3.2 Minimal subspaces and eigenfunctions |
|
|
224 | (4) |
|
|
228 | (2) |
|
|
230 | (3) |
|
9 Moment sequences and binomial sums |
|
|
233 | (22) |
|
|
233 | (6) |
|
9.2 Operators on sequence spaces |
|
|
239 | (2) |
|
|
241 | (14) |
|
9.3.1 Proof of Theorem 9.3.1 |
|
|
242 | (2) |
|
9.3.2 A technical refinement |
|
|
244 | (4) |
|
9.3.3 Application to Banach algebras and invariant subspaces |
|
|
248 | (3) |
|
|
251 | (1) |
|
|
252 | (3) |
|
10 Positive and strictly-singular operators |
|
|
255 | (14) |
|
10.1 Ordered spaces and positive operators |
|
|
255 | (2) |
|
10.2 Invariant subspaces for positive operators |
|
|
257 | (6) |
|
10.3 Strictly singular operators |
|
|
263 | (6) |
|
|
265 | (1) |
|
|
266 | (3) |
References |
|
269 | (12) |
Index |
|
281 | |