Muutke küpsiste eelistusi

E-raamat: Modern Approaches to the Invariant-Subspace Problem

(Université Lyon I), (University of Leeds)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 137,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics"--

Provided by publisher.

Arvustused

'I think this is a very useful book which will serve as a good source for a rich variety of methods that have been developed for proving positive results on the ISP. Moreover, there is much material in the book which is of interest beyond its application to the ISP. [ It] should be of interest to analysts in general as well as being an essential source for study of the ISP.' Sandy Davie, SIAM Review

Muu info

Presents work on the invariant subspace problem, a major unsolved problem in operator theory.
Preface ix
1 Background
1(36)
1.1 Functional analysis
1(13)
1.1.1 Weak topology
1(2)
1.1.2 Hahn-Banach theorem
3(1)
1.1.3 Stone-Weierstrass theorem
4(1)
1.1.4 Banach-Steinhaus theorem
5(1)
1.1.5 Complex measures
6(5)
1.1.6 Riesz representation theorem
11(2)
1.1.7 Geometry of Banach spaces
13(1)
1.2 Operator theory
14(8)
1.2.1 Basic definitions and spectral properties
14(6)
1.2.2 Wold decomposition of an isometry
20(1)
1.2.3 Riesz-Dunford functional calculus
21(1)
1.3 The Poisson kernel
22(1)
1.4 Hardy spaces
23(13)
1.4.1 Inner and outer functions
25(3)
1.4.2 Consequences of the inner-outer factorization
28(2)
1.4.3 The theorems of Beurling and Wiener
30(1)
1.4.4 The disc algebra
31(1)
1.4.5 Reproducing kernels, Riesz bases and Carleson sequences
31(3)
1.4.6 Functions of bounded mean oscillation
34(1)
1.4.7 The Hilbert transform on the unit circle
35(1)
1.5 Number Theory
36(1)
2 The operator-valued Poisson kernel and its applications
37(20)
2.1 The operator-valued Poisson kernel
37(6)
2.2 The H∞ functional calculus for absolutely continuous p-contractions
43(3)
2.3 H∞ functional calculus in a complex Banach space
46(4)
2.4 Absolutely continuous elementary spectral measures
50(7)
Exercises
53(1)
Comments
54(3)
3 Properties (An,m) and factorization of integrable functions
57(46)
3.1 The basis of the S. Brown method
57(10)
3.1.1 The starting point
57(5)
3.1.2 The class A
62(1)
3.1.3 Classes An,m
63(4)
3.2 Factorization of log-integrable functions
67(14)
3.3 Applications in harmonic analysis
81(5)
3.4 Subnormal operators
86(6)
3.4.1 Borelian functional calculus for normal operators
86(1)
3.4.2 Invariant subspaces for subnormal operators
87(5)
3.5 Surjectivity of continuous bilinear mapping
92(11)
3.5.1 A sufficient condition for property (A0)
92(4)
3.5.2 A sufficient condition for property (A1,0)
96(3)
Exercises
99(1)
Comments
100(3)
4 Polynomially bounded operators with rich spectrum
103(38)
4.1 Apostol's theorem
103(4)
4.2 C2(T) functional calculus and the Colojoara-Foias theorem
107(4)
4.2.1 Operators with a C2(T) functional calculus
107(3)
4.2.2 The Colojoara-Foias, theorem
110(1)
4.3 Zenger's theorem
111(7)
4.3.1 Zenger's theorem and a factorization result
112(2)
4.3.2 A stronger version of Zenger's theorem
114(4)
4.4 Carleson's interpolation theorem
118(5)
4.5 Approximation using Apostol sets
123(6)
4.5.1 Approximation of integrable non-negative functions
123(5)
4.5.2 Approximate eigenvalues
128(1)
4.6 Invariant subspace results
129(12)
Exercises
137(1)
Comments
138(3)
5 Beurling algebras
141(28)
5.1 Properties of Beurling algebras
142(4)
5.2 Theorems of Wermer and Atzmon
146(6)
5.3 Bishop operators
152(8)
5.3.1 Davie's functional calculus
152(4)
5.3.2 The point spectrum
156(4)
5.4 Rational Bishop operators
160(9)
5.4.1 Cyclic vectors
161(2)
5.4.2 The lattice of invariant subspaces
163(4)
Exercises
167(1)
Comments
167(2)
6 Applications of a fixed-point theorem
169(14)
6.1 Operators commuting with compact operators
169(2)
6.2 Essentially self-adjoint operators
171(12)
6.2.1 Preliminaries
171(6)
6.2.2 Application to invariant subspaces
177(3)
Exercises
180(1)
Comments
181(2)
7 Minimal vectors
183(30)
7.1 The basic definitions
183(2)
7.2 Minimal vectors in Hilbert space
185(1)
7.3 A general extremal problem
186(6)
7.3.1 Approximation in Hilbert spaces
187(2)
7.3.2 Approximation in reflexive Banach spaces
189(3)
7.4 Application to hyperinvariant subspaces
192(21)
7.4.1 The main theorem
192(3)
7.4.2 Compact operators
195(1)
7.4.3 Weighted composition operators
196(9)
7.4.4 Weighted shifts
205(3)
7.4.5 Multiplication operators on Lp spaces
208(3)
Exercises
211(1)
Comments
211(2)
8 Universal operators
213(20)
8.1 Construction of universal models
213(4)
8.2 Bilateral weighted shifts
217(3)
8.3 Composition operators
220(13)
8.3.1 Universality of composition operators
220(4)
8.3.2 Minimal subspaces and eigenfunctions
224(4)
Exercises
228(2)
Comments
230(3)
9 Moment sequences and binomial sums
233(22)
9.1 Moment sequences
233(6)
9.2 Operators on sequence spaces
239(2)
9.3 Binomial sums
241(14)
9.3.1 Proof of Theorem 9.3.1
242(2)
9.3.2 A technical refinement
244(4)
9.3.3 Application to Banach algebras and invariant subspaces
248(3)
Exercises
251(1)
Comments
252(3)
10 Positive and strictly-singular operators
255(14)
10.1 Ordered spaces and positive operators
255(2)
10.2 Invariant subspaces for positive operators
257(6)
10.3 Strictly singular operators
263(6)
Exercises
265(1)
Comments
266(3)
References 269(12)
Index 281
Isabelle Chalendar is an Assistant Professor in the Department of Mathematics at the University of Lyon 1, France. Jonathan R. Partington is a Professor in the School of Mathematics at the University of Leeds.