Muutke küpsiste eelistusi

E-raamat: Modern Ceramic Engineering: Properties, Processing, and Use in Design, Fourth Edition

(Retired, University of Utah.),
  • Formaat: 836 pages
  • Ilmumisaeg: 27-Apr-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498716932
  • Formaat - EPUB+DRM
  • Hind: 175,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 836 pages
  • Ilmumisaeg: 27-Apr-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498716932

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since the publication of its Third Edition, there have been many notable advances in ceramic engineering. Modern Ceramic Engineering, Fourth Edition serves as an authoritative text and reference for both professionals and students seeking to understand key concepts of ceramics engineering by introducing the interrelationships among the structure, properties, processing, design concepts, and applications of advanced ceramics. Written in the same clear manner that made the previous editions so accessible, this latest edition has been expanded to include new information in almost every chapter, as well as two new chapters that present a variety of relevant case studies. The new edition now includes updated content on nanotechnology, the use of ceramics in integrated circuits, flash drives, and digital cameras, and the role of miniaturization that has made our modern digital devices possible, as well as information on electrochemical ceramics, updated discussions on LEDs, lasers and optical applications, and the role of ceramics in energy and pollution control technologies. It also highlights the increasing importance of modeling and simulation.

Preface xxi
Authors xxiii
Part I: Ceramics as Engineering Materials
Chapter 1 What Is a Ceramic?
3(6)
1.1 Definitions of Ceramics
3(1)
1.2 Material Types Generally Considered in the Ceramics Family
3(2)
1.2.1 Polycrystalline Ceramics Fabricated by Sintering
3(1)
1.2.2 Glass
4(1)
1.2.3 Glass Ceramics
4(1)
1.2.4 Single Crystals of Ceramic Compositions
4(1)
1.2.5 Chemical Synthesis or Bonding
5(1)
1.2.6 Natural Ceramics
5(1)
1.3 So What Is a Ceramic?
5(1)
Special Optional Assignment
6(1)
References
7(1)
Study Guide
7(2)
Chapter 2 History of Ceramics
9(16)
2.1 Ceramics in the Stone Age
9(4)
2.1.1 Use of Natural Ceramics
9(2)
2.1.2 Synthetic Stone: Clay Transformed by Fire
11(1)
2.1.3 First Practical Use of Earthenware
11(1)
2.1.4 Other Neolithic Ceramic Innovations
12(1)
2.2 Rise of Traditional Ceramic Industries
13(8)
2.2.1 Ceramic Innovations during the Chalcolithic Period
13(2)
2.2.2 Ceramics and the Metal Ages
15(1)
2.2.3 Emergence of Glass
15(1)
2.2.4 Ceramics in Building
16(4)
2.2.5 Ceramic Whitewares
20(1)
2.3 From Traditional to Modern Ceramics
21(2)
2.4 Summary
23(1)
References
23(1)
Additional Recommended Reading on Technical Aspects of Traditional Ceramics
23(1)
Study Guide
23(2)
Chapter 3 Applications: Engineering with Ceramics
25(72)
3.1 High-Temperature Applications
25(14)
3.1.1 Ceramics in Metal Processing
25(4)
3.1.2 Glass Production
29(1)
3.1.3 Industrial Processes
29(5)
3.1.3.1 Furnace and Reaction Vessel Linings
29(1)
3.1.3.2 Heat Sources
30(1)
3.1.3.3 Heat Exchangers
30(3)
3.1.3.4 Heat Exchange for Chemical Processing
33(1)
3.1.4 Heat Engines
34(5)
3.1.4.1 Gas Turbine Engines
34(3)
3.1.4.2 Internal Combustion Engines
37(1)
3.1.4.3 Aerospace
38(1)
3.2 Wear and Corrosion Resistance Applications
39(10)
3.2.1 Seals
39(4)
3.2.2 Valves
43(3)
3.2.3 Pumps
46(1)
3.2.4 Bearings
46(2)
3.2.5 Thread Guides
48(1)
3.2.6 Ceramics in Papermaking
49(1)
3.3 Cutting and Grinding
49(5)
3.3.1 Ceramic Cutting Tool Inserts
50(3)
3.3.2 Superhard Abrasives
53(1)
3.3.3 Waterjet Cutting
53(1)
3.4 Electrical Applications of Ceramics
54(10)
3.4.1 Ceramic Electrical Insulators
54(3)
3.4.2 Dielectric Ceramics
57(1)
3.4.3 Semiconductors
58(2)
3.4.4 Electrical Conductors
60(3)
3.4.5 Ceramic Superconductors
63(1)
3.5 Magnetic Ceramics
64(1)
3.6 Optical Applications of Ceramics
65(6)
3.6.1 Applications Based on Transparency
66(3)
3.6.1.1 Window Glass
66(2)
3.6.1.2 Container Glass
68(1)
3.6.1.3 Optical Glass Fibers
68(1)
3.6.1.4 Lenses
68(1)
3.6.2 Applications Based on Phosphorescence and Fluorescence
69(3)
3.6.2.1 Fluorescent Light
69(1)
3.6.2.2 Television and Oscilloscopes
69(1)
3.6.2.3 Electroluminescent Lamps
70(1)
3.6.2.4 Lasers
70(1)
3.7 Composites
71(1)
3.8 Medical Applications of Ceramics
72(9)
3.8.1 Replacement and Repair
72(4)
3.8.1.1 Dental Ceramics
72(2)
3.8.1.2 Hip Implants
74(1)
3.8.1.3 Spine Repair
75(1)
3.8.1.4 Middle-Ear Implants
75(1)
3.8.1.5 Eye Repairs
75(1)
3.8.1.6 Heart Valve Implants
76(1)
3.8.1.7 Prosthetic Devices
76(1)
3.8.2 Ceramics for Medical Diagnosis
76(3)
3.8.2.1 CT Scanner
76(1)
3.8.2.2 Endoscopy
77(1)
3.8.2.3 Ultrasound Imaging
78(1)
3.8.3 Ceramics in Medical Treatment and Therapy
79(2)
3.9 Energy Efficiency and Pollution Control
81(6)
3.9.1 Energy Savings in the Home
81(3)
3.9.1.1 Fiberglass Insulation
81(1)
3.9.1.2 Efficient Light Sources
82(2)
3.9.1.3 Gas Appliances
84(1)
3.9.2 Ceramics for Power Generation
84(1)
3.9.3 Ceramics in the Transportation Sector
85(2)
3.9.4 Other Uses of Ceramics for Energy Efficiency and Pollution Control
87(1)
3.10 Military
87(1)
3.11 Recreation
88(1)
3.12 Ceramics Modeling and Simulation
89(3)
3.13 Summary
92(1)
References
92(1)
Study Guide
93(4)
Part II: Structures and Properties
Chapter 4 Atomic Bonding and Crystal Structure
97(26)
4.1 Electronic Configuration of Atoms
97(3)
4.2 Bonding
100(11)
4.2.1 Metallic Bonding
102(1)
4.2.2 Ionic Bonding
102(5)
4.2.3 Covalent Bonding
107(2)
4.2.4 Ionic and Covalent Bond Combinations
109(1)
4.2.5 van der Waals Bonds
109(2)
4.3 Polymorphic Forms and Transformations
111(2)
4.4 Noncrystalline Structures
113(2)
4.4.1 Glasses
113(2)
4.4.2 Gels
115(1)
4.4.3 Vapor Deposition
115(1)
4.5 Molecular Structures
115(5)
4.5.1 Hydrocarbons
115(1)
4.5.2 Addition Polymerization
116(1)
4.5.3 Condensation Polymerization
117(1)
4.5.4 Polymer Crystallization
118(1)
4.5.5 Cross-Linking and Branching
118(2)
References
120(1)
Problems
120(1)
Study Guide
120(3)
Chapter 5 Crystal Chemistry and Specific Crystal Structures
123(40)
5.1 Crystal Structure Notations
123(4)
5.1.1 Crystal Systems and Bravais Lattices
123(1)
5.1.2 Crystal Directions and Planes
123(4)
5.1.3 Structure, Composition, and Coordination Notations
127(1)
5.2 Crystal Chemistry of Ceramics
127(6)
5.2.1 Crystal Chemistry Concepts
128(3)
5.2.1.1 Ionic Radius
128(1)
5.2.1.2 Ionic Packing
128(2)
5.2.1.3 Effect of Charge
130(1)
5.2.2 Crystal Chemical Substitutions
131(1)
5.2.3 Derivative Structures
132(1)
5.2.3.1 Ordering
132(1)
5.2.3.2 Nonstoichiometry
132(1)
5.2.3.3 Stuffing
132(1)
5.2.3.4 Distortion
133(1)
5.3 Metallic and Ceramic Crystal Structures
133(27)
5.3.1 Metallic Crystal Structures
133(1)
5.3.2 Ceramic Structures with a Single Element
134(4)
5.3.3 Binary Ceramic Structures
138(6)
5.3.3.1 [ Rock Salt] Structure A[ 6]X[ 6]
139(1)
5.3.3.2 [ Nickel Arsenide] Structure A[ 6]X[ 6]
139(1)
5.3.3.3 [ Cesium Chloride] Structure A[ 8]X[ 8]
139(1)
5.3.3.4 [ Zinc Blende] and [ Wurtzite] Structures A[ 4]X[ 4]
139(1)
5.3.3.5 [ Fluorite] Structure A[ 8]X[ 42
140(1)
5.3.3.6 [ Antifluorite] Structure A[ 4]X[ 8]
141(1)
5.3.3.7 [ Rutile] Structure A[ 6]X[ 3]
141(1)
5.3.3.8 Silica Structures A[ 4]X[ 2]2
142(2)
5.3.3.9 [ Corundum] Structure A[ 6]2X[ 43
144(1)
5.3.4 Ternary Ceramic Structures
144(8)
5.3.4.1 A2BX4 Structures
145(3)
5.3.4.2 ABX4 Structures
148(1)
5.3.4.3 ABX3 Structures
148(2)
5.3.4.4 Other Structures
150(1)
5.3.4.5 Carbide and Nitride Structures
151(1)
5.3.5 Crystal Defects and Stoichiometry
152(11)
5.3.5.1 Zero-Dimensional (Point) Defects
152(2)
5.3.5.2 One-Dimensional (Line) Defects
154(1)
5.3.5.3 Two-Dimensional (Planar) Defects
154(5)
5.3.5.4 Three-Dimensional (Volume) Defects
159(1)
5.3.5.5 Accommodating Nonstoichiometry in Crystals
160(1)
References
160(1)
Additional Recommended Reading
161(1)
Problems
161(1)
Study Guide
162(1)
Chapter 6 Phase Equilibria and Phase Equilibrium Diagrams
163(40)
6.1 Phase Equilibrium Diagrams
163(25)
6.1.1 Concept of Phase Equilibria
164(1)
6.1.2 Phase Rule
164(1)
6.1.3 One-Component Phase Diagrams
165(1)
6.1.4 Two-Component Systems
166(3)
6.1.4.1 Binary Eutectic Systems
168(1)
6.1.5 Intermediate Compounds
169(8)
6.1.5.1 Solid Solution
174(1)
6.1.5.2 Liquid Immiscibility
174(2)
6.1.5.3 Exsolution
176(1)
6.1.5.4 Polymorphism
176(1)
6.1.6 Three-Component Systems
177(11)
6.1.6.1 Simple Eutectic Ternary Diagram
177(4)
6.1.6.2 Ternary System with Congruently Melting Binary Compound AB
181(1)
6.1.6.3 Ternary System with Incongruently Melting Binary Compound AB
182(1)
6.1.6.4 Ternary Compounds
183(1)
6.1.6.5 Polymorphic Transformations
183(1)
6.1.6.6 Immiscible Liquids in Ternary Systems
183(2)
6.1.6.7 Solid Solution in Ternary Systems
185(2)
6.1.6.8 Real Ternary Systems
187(1)
6.2 Phase Equilibrium Diagram Composition Calculations
188(5)
6.2.1 Composition Conversions
188(3)
6.2.2 Binary Composition Calculations
191(1)
6.2.3 Ternary Composition Calculations
192(1)
6.3 Isoplethal Crystallization Paths
193(3)
6.3.1 Binary Isoplethal Analysis
193(1)
6.3.2 Ternary System Isoplethal Analysis
194(2)
6.4 Nonequilibrium Behavior
196(3)
6.4.1 Sluggish Kinetics
197(1)
6.4.2 Rapid Heating or Cooling
197(1)
6.4.3 Nucleation Difficulty
198(1)
6.4.4 Elastic Constraint of a Polymorphic Transformation
198(1)
6.4.5 Additional Information on Nonequilibrium
198(1)
References
199(1)
Problems
199(1)
Study Guide
200(3)
Chapter 7 Physical and Thermal Behavior
203(32)
7.1 Physical Properties
203(9)
7.1.1 Density
203(6)
7.1.1.1 Crystallographic Density
203(2)
7.1.1.2 Bulk Density
205(1)
7.1.1.3 Theoretical Density
206(1)
7.1.1.4 Specific Gravity
207(1)
7.1.1.5 Open Porosity
207(2)
7.1.1.6 Density Comparisons
209(1)
7.1.2 Melting Behavior
209(3)
7.2 Thermal Properties
212(9)
7.2.1 Heat Capacity
212(1)
7.2.2 Thermal Conductivity
213(8)
7.3 Thermal Expansion
221(9)
7.3.1 Factors Influencing Thermal Expansion
222(13)
7.3.1.1 Thermal Expansion of Metals
222(1)
7.3.1.2 Thermal Expansion of Ceramics
223(5)
7.3.1.3 Thermal Expansion of Noncrystalline Solids
228(1)
7.3.1.4 Thermal Expansion of Organic Solids
228(1)
7.3.1.5 Importance of Thermal Expansion
228(1)
7.3.1.6 Simulating Thermal Properties
229(1)
7.3.1.7 Thermal Properties in the Future
230(1)
References
230(1)
Problems
231(1)
Study Guide
232(3)
Chapter 8 Mechanical Behavior and Measurement
235(34)
8.1 Elasticity
235(5)
8.1.1 Modulus of Elasticity
236(4)
8.1.2 Elastic Modulus Measurement
240(1)
8.1.3 Poisson's Ratio
240(1)
8.2 Strength
240(14)
8.2.1 Theoretical Strength
241(1)
8.2.2 Effects of Flaw Size
242(4)
8.2.2.1 Pore Shape
244(1)
8.2.2.2 Pore-Crack Combinations
244(1)
8.2.2.3 Internal Pores
244(2)
8.2.2.4 Pore Clusters
246(1)
8.2.2.5 Inclusions
246(1)
8.2.3 Strength Measurement
246(6)
8.2.3.1 Tensile Strength
246(2)
8.2.3.2 Compressive Strength
248(1)
8.2.3.3 Bend Strength
249(2)
8.2.3.4 Biaxial Strength
251(1)
8.2.4 Strength Data for Ceramic Materials
252(2)
8.3 Fracture Toughness
254(3)
8.4 Ductile versus Brittle Behavior
257(7)
8.4.1 Mechanism of Plastic Deformation
257(1)
8.4.2 Deformation Behavior of Metals
258(2)
8.4.3 Deformation Behavior in Ceramics
260(4)
8.4.3.1 Single Crystals
260(4)
8.4.3.2 Polycrystalline Ceramics
264(1)
8.4.4 Ceramics Deformation Summary
264(1)
8.5 Advanced Mechanical Testing Techniques and Modeling
264(1)
References
265(1)
Additional Recommended Reading
266(1)
Problems
267(1)
Study Guide
268(1)
Chapter 9 Time, Temperature, and Environmental Effects on Properties
269(46)
9.1 Creep
269(9)
9.1.1 Effects of Temperature and Stress on Creep
270(1)
9.1.2 Effects of Single-Crystal Structure on Creep
271(1)
9.1.3 Effects of Microstructure of Polycrystalline Ceramics on Creep
272(1)
9.1.4 Creep in Noncrystalline Ceramics
273(1)
9.1.5 Effects of Composition, Stoichiometry, and Environment
274(1)
9.1.6 Measurement of Creep
274(3)
9.1.7 Creep Consideration for Component Design
277(1)
9.2 Static Fatigue
278(3)
9.3 Chemical Effects
281(16)
9.3.1 Gas-Solid Reactions
282(7)
9.3.1.1 Oxidation
282(4)
9.3.1.2 Reduction and Other Reactions
286(1)
9.3.1.3 Thermodynamics
287(1)
9.3.1.4 Interactions with Water Vapor
288(1)
9.3.1.5 Vaporization and Dissociation
289(1)
9.3.2 Liquid-Solid Reactions
289(8)
9.3.2.1 Ambient Temperature Corrosion
290(1)
9.3.2.2 High-Temperature Corrosion of Oxides
290(2)
9.3.2.3 Condensed-Phase Corrosion
292(3)
9.3.2.4 Corrosion in Coal Combustion Environments
295(2)
9.3.3 Solid-Solid Reactions
297(1)
9.4 Mechanically Induced Effects
297(6)
9.4.1 Surface Flaw Formation
297(4)
9.4.2 Removal of Surface Material
301(2)
9.5 Thermal Shock
303(7)
References
310(2)
Problems
312(1)
Study Guide
313(2)
Chapter 10 Electrical Behavior
315(40)
10.1 Fundamentals and Definitions
315(1)
10.2 Electronic Conductivity
316(4)
10.3 Ionic Conductivity
320(13)
10.3.1 Mechanisms of Ionic Conductivity
320(1)
10.3.2 Ceramic Materials Exhibiting Ionic Conductivity
321(2)
10.3.3 Applications of Zirconia Oxygen Ion Conductive Ceramics
323(6)
10.3.3.1 Oxygen Sensors
323(2)
10.3.3.2 Oxygen Pumps
325(1)
10.3.3.3 Electrolysis and Thermolysis
326(1)
10.3.3.4 SOx-NOx Decomposition
326(1)
10.3.3.5 Solid Oxide Fuel Cells
326(2)
10.3.3.6 Resistance Heating Elements
328(1)
10.3.3.7 Galvanic Cells for Thermodynamic and Kinetic Measurements
329(1)
10.3.4 Alternative Oxygen Ion Conductors
329(1)
10.3.5 Sodium Ion Conductors and Applications
329(3)
10.3.6 Lithium Ion Conduction and Applications
332(1)
10.4 Conductive Polymers
333(1)
10.5 Electrical Insulators
333(5)
10.5.1 Applications of Electrical Insulators
335(3)
10.5.1.1 Integrated Circuit Substrates and Packages
336(2)
10.5.1.2 Spark Plug Insulators
338(1)
10.5.1.3 Power Line Insulators
338(1)
10.6 Semiconductors
338(7)
10.6.1 Mechanisms of Semiconduction
338(3)
10.6.2 Applications of Ceramic Semiconductors
341(1)
10.6.3 Photovoltaic Semiconductors
342(3)
10.7 Superconductivity
345(7)
10.7.1 Mechanism of Superconductivity
345(2)
10.7.2 Characteristics of Superconductivity
347(1)
10.7.3 Evolution of Superconductor Materials
348(1)
10.7.4 Structure of High-Tc Ceramic Superconductors
349(1)
10.7.5 Characteristics of the 1:2:3 Ceramic Superconductor
349(2)
10.7.6 Applications of Superconductors
351(1)
References
352(1)
Additional Recommended Reading
353(1)
Problems
353(1)
Study Guide
354(1)
Chapter 11 Dielectric, Magnetic, and Optical Behavior
355(48)
11.1 Dielectric Properties
355(25)
11.1.1 Polarization
355(1)
11.1.2 Dielectric Constant
356(2)
11.1.3 Dielectric Strength
358(1)
11.1.4 Dielectric Loss
358(3)
11.1.5 Capacitance
361(6)
11.1.5.1 Functions of a Capacitor
364(1)
11.1.5.2 History of Capacitors
364(1)
11.1.5.3 Mechanism of High Dielectric Constant
364(2)
11.1.5.4 Types of Capacitors
366(1)
11.1.6 Piezoelectricity
367(2)
11.1.7 Pyroelectricity
369(1)
11.1.8 Ferroelectricity
369(11)
11.1.8.1 Types of Ferroelectric Crystals
372(1)
11.1.8.2 Polycrystalline Ferroelectrics
372(8)
11.2 Magnetic Behavior
380(8)
11.2.1 Source of Magnetism
380(4)
11.2.2 Magnetic Terminology
384(1)
11.2.3 Applications of Magnetic Ceramics
385(3)
11.3 Optical Behavior
388(9)
11.3.1 Absorption and Transparency
388(2)
11.3.2 Color
390(1)
11.3.3 Phosphorescence
391(1)
11.3.4 Lasers
392(1)
11.3.5 Index of Refraction
393(4)
11.3.6 Electro-Optics and Integrated Optic Devices
397(1)
References
397(1)
Problems
398(1)
Study Guide
399(4)
Part III: Processing of Ceramics
Chapter 12 Introduction to Ceramic Fabrication Approaches Including Powder Processing
403(44)
12.1 General Ceramic Processing Approaches
403(10)
12.1.1 Conventional Ceramic Processing by Compaction of Powders
403(2)
12.1.2 Refractory Processing
405(1)
12.1.3 Melting and Fusion Ceramic Processing
406(3)
12.1.4 Room-or Low-Temperature Processing
409(1)
12.1.5 Other Ceramic Processing Options
409(4)
12.1.5.1 Coatings
410(1)
12.1.5.2 Infiltration Processes
410(1)
12.1.5.3 Metal-Gas Reaction
411(1)
12.1.5.4 Porous Ceramics
412(1)
12.1.5.5 Advanced and Emerging Processes
412(1)
12.2 Powder Processing
413(5)
12.2.1 Raw Materials
414(2)
12.2.1.1 Traditional Ceramics
414(1)
12.2.1.2 Modern Ceramics
414(2)
12.2.2 Raw Material Selection Criteria
416(2)
12.2.2.1 Purity
416(1)
12.2.2.2 Particle Size and Reactivity
417(1)
12.3 Powder Preparation and Sizing
418(18)
12.3.1 Mechanical Sizing
418(11)
12.3.1.1 Screening
418(2)
12.3.1.2 Air Classification
420(1)
12.3.1.3 Elutriation
421(1)
12.3.1.4 Ball Milling
422(3)
12.3.1.5 Attrition Milling
425(1)
12.3.1.6 Vibratory Milling
426(2)
12.3.1.7 Fluid Energy Milling
428(1)
12.3.1.8 Hammer Milling
428(1)
12.3.1.9 Roll Crushing
428(1)
12.3.1.10 Miscellaneous Crushing
429(1)
12.3.2 Chemical Sizing
429(6)
12.3.2.1 Precipitation
429(1)
12.3.2.2 Freeze Drying
429(1)
12.3.2.3 Hot Kerosene Drying
430(1)
12.3.2.4 Sol-Gel
431(1)
12.3.2.5 Liquid Mix Process
432(1)
12.3.2.6 Spray Roasting
432(1)
12.3.2.7 Decomposition
433(1)
12.3.2.8 Hydrothermal Synthesis
433(2)
12.3.2.9 Plasma Techniques
435(1)
12.3.2.10 Laser Techniques
435(1)
12.3.3 Miscellaneous Powder Synthesis/Sizing Techniques
435(1)
12.3.3.1 Calcining
435(1)
12.3.3.2 Rotary Kiln
435(1)
12.3.3.3 Fluidized Bed
436(1)
12.3.3.4 Self-Propagating Combustion
436(1)
12.3.3.5 Gas Condensation
436(1)
12.4 Preconsolidation
436(5)
12.4.1 Additives
437(2)
12.4.2 Spray Drying
439(1)
12.4.3 Granulation
440(1)
12.5 Batch Determination
441(2)
References
443(2)
Additional Recommended Reading
445(1)
Problems
445(1)
Study Guide
445(2)
Chapter 13 Shape-Forming Processes
447(76)
13.1 Pressing
447(19)
13.1.1 Steps in Pressing
447(1)
13.1.2 Selection of Additives
448(7)
13.1.2.1 Binders and Plasticizers
448(5)
13.1.2.2 Lubricants and Compaction Aids
453(1)
13.1.2.3 Removal of Organic Additives
454(1)
13.1.3 Uniaxial Pressing: Presses and Tooling
455(6)
13.1.3.1 Dry Pressing
457(1)
13.1.3.2 Wet Pressing
457(1)
13.1.3.3 Uniaxial Pressing Problems
457(4)
13.1.4 Isostatic Pressing
461(4)
13.1.4.1 Wet-Bag Isostatic Pressing
463(1)
13.1.4.2 Dry-Bag Isostatic Pressing
464(1)
13.1.5 Applications of Pressing
465(1)
13.2 Casting
466(23)
13.2.1 Slip Casting
466(20)
13.2.1.1 Raw Materials
466(1)
13.2.1.2 Powder Processing
467(1)
13.2.1.3 Slip Preparation and Rheology
468(1)
13.2.1.4 Particle Size and Shape Effects
468(2)
13.2.1.5 Particle Surface Effects
470(7)
13.2.1.6 Slip Preparation
477(1)
13.2.1.7 Mold Preparation
478(1)
13.2.1.8 Casting
479(6)
13.2.1.9 Casting Process Control
485(1)
13.2.1.10 Drying
485(1)
13.2.2 Tape Casting
486(3)
13.2.2.1 Doctor Blade Process
486(1)
13.2.2.2 Other Tape-Casting Processes
486(1)
13.2.2.3 Preparation of Tape-Casting Slurries
487(1)
13.2.2.4 Applications of Tape Casting
488(1)
13.3 Plastic Forming
489(26)
13.3.1 Extrusion
491(9)
13.3.1.1 Extrusion Equipment
491(1)
13.3.1.2 Binders and Additives for Extrusion
492(3)
13.3.1.3 Extrusion Steps
495(3)
13.3.1.4 Common Extrusion Defects
498(1)
13.3.1.5 Applications of Extrusion
499(1)
13.3.2 Injection Molding
500(14)
13.3.2.1 Injection-Molding Parameters
500(5)
13.3.2.2 Injection-Molding Defects
505(5)
13.3.2.3 Applications of Injection Molding
510(1)
13.3.2.4 Nonthermoplastic Injection Molding
511(3)
13.3.3 Compression Molding
514(1)
13.3.4 Roll Forming
514(1)
13.3.5 Jiggering
515(1)
13.4 Green Machining
515(1)
References
516(2)
Additional Recommended Reading
518(1)
Problems
518(2)
Study Guide
520(3)
Chapter 14 Densification
523(54)
14.1 Theory of Sintering
523(19)
14.1.1 Stages of Sintering
523(2)
14.1.2 Mechanisms of Sintering
525(11)
14.1.2.1 Vapor-Phase Sintering
525(2)
14.1.2.2 Solid-State Sintering
527(6)
14.1.2.3 Liquid-Phase Sintering
533(1)
14.1.2.4 Reactive Liquid Sintering
534(2)
14.1.3 Control of Conventional Sintering
536(4)
14.1.3.1 Atmosphere
537(1)
14.1.3.2 Time and Temperature Cycle
537(1)
14.1.3.3 Design of the Furnace
537(3)
14.1.4 Sintering Problems
540(2)
14.1.4.1 Warpage
540(1)
14.1.4.2 Overfiring
541(1)
14.1.4.3 Burn-Off of Binders
541(1)
14.1.4.4 Decomposition Reactions
541(1)
14.1.4.5 Polymorphic Transformations
542(1)
14.2 Modified Densification Processes
542(30)
14.2.1 Modified Particulate Processes
542(2)
14.2.1.1 Overpressure Sintering
542(2)
14.2.2 Hot Pressing
544(6)
14.2.2.1 Unique Hot-Pressed Properties
547(1)
14.2.2.2 Hot-Pressing Limitations
548(2)
14.2.3 Hot Isostatic Pressing
550(2)
14.2.4 Field-Assisted Sintering Techniques
552(2)
14.2.5 Chemical Processes
554(5)
14.2.5.1 Chemical Reaction
554(5)
14.2.6 Cementitious Bonding
559(1)
14.2.7 Pyrolysis
560(2)
14.2.8 Melt Processing
562(1)
14.2.8.1 Casting, Drawing, and Blowing
562(1)
14.2.8.2 Spraying
562(1)
14.2.9 Crystallization
563(4)
14.2.10 Vapor Processing
567(4)
14.2.11 Infiltration
571(1)
14.2.12 Metal-Gas Reaction
571(1)
References
572(2)
Additional Recommended Reading
574(1)
Problems
575(1)
Study Guide
575(2)
Chapter 15 Final Machining
577(18)
15.1 Mechanisms of Material Removal
577(4)
15.1.1 Mounted-Abrasive Machining
577(1)
15.1.2 Free-Abrasive Machining
578(1)
15.1.3 Impact Abrasive Machining
578(1)
15.1.4 Chemical Machining
579(1)
15.1.4.1 Photoetching
579(1)
15.1.5 Electrical Discharge Machining
579(1)
15.1.6 Laser Machining
580(1)
15.2 Effects on Strength
581(11)
15.2.1 Effect of Grinding Direction
582(1)
15.2.2 Effects of Microstructure
583(1)
15.2.3 Effects of Grinding Parameters
584(2)
15.2.4 Optimization of Grinding
586(12)
15.2.4.1 Lapping
588(2)
15.2.4.2 Annealing
590(1)
15.2.4.3 Oxidation
590(1)
15.2.4.4 Chemical Etching
590(1)
15.2.4.5 Surface Compression
590(1)
15.2.4.6 Flame Polishing
591(1)
15.3 Additional Sources of Information
592(1)
References
592(1)
Additional Recommended Reading
593(1)
Problems
593(1)
Study Guide
594(1)
Chapter 16 Quality Assurance
595(28)
16.1 In-Process QA
595(1)
16.2 Specification and Certification
596(2)
16.3 Proof Testing
598(1)
16.4 Nondestructive Inspection
598(11)
16.4.1 Penetrants
599(1)
16.4.2 X-Ray Radiography
599(4)
16.4.2.1 Conventional X-Ray Radiography
599(2)
16.4.2.2 Microfocus X-Ray Radiography
601(1)
16.4.2.3 Image Enhancement
601(2)
16.4.3 Computed Tomography
603(3)
16.4.4 Ultrasonic NDI
606(3)
16.4.5 Other NDI Techniques
609(1)
16.5 Quality Problem Solving and Improvement
609(7)
16.5.1 Nature of Variation in a Fabrication Process
609(1)
16.5.2 SPC Tools and Techniques
610(5)
16.5.2.1 Flow Chart
610(1)
16.5.2.2 Check Sheet
611(1)
16.5.2.3 Pareto Chart
612(1)
16.5.2.4 Brainstorming
612(1)
16.5.2.5 Cause and Effect Diagram (Fishbone Diagram)
612(1)
16.5.2.6 Five-Whys Diagram
613(1)
16.5.2.7 Run Charts and Control Charts
613(2)
16.5.3 Use of SPC Tools for Continuous Improvement
615(1)
16.5.4 QA Perspective of the End User
616(1)
16.6 Future Developments in QA
616(1)
References
616(2)
Additional Recommended Reading
618(1)
Problems
618(1)
Study Guide
618(5)
Part IV: Design with Ceramics
Chapter 17 Design Considerations
623(8)
17.1 Requirements of the Application
623(1)
17.2 Property Limitations
624(2)
17.3 Fabrication Limitations
626(2)
17.4 Cost Considerations
628(1)
17.5 Reliability Requirements
628(1)
17.6 Summary
629(1)
References
629(1)
Study Guide
629(2)
Chapter 18 Design Approaches
631(16)
18.1 Empirical Design
631(1)
18.2 Deterministic Design
631(3)
18.3 Probabilistic Design
634(7)
18.3.1 Weibull Statistics
634(5)
18.3.2 Use of the Weibull Distribution in Design
639(1)
18.3.3 Advantages of Probabilistic Design
639(2)
18.3.4 Limitations of Probabilistic Design
641(1)
18.4 Linear Elastic Fracture Mechanics Approach
641(1)
18.5 Combined Approaches
642(1)
18.6 Computer-Assisted Design
642(1)
References
643(1)
Additional Recommended Reading
643(1)
Problems
644(1)
Study Guide
645(2)
Chapter 19 Failure Analysis
647(30)
19.1 Fractography
647(27)
19.1.1 Location of the Fracture Origin
648(5)
19.1.1.1 Fracture Mirror and Hackle
649(2)
19.1.1.2 Wallner Lines
651(1)
19.1.1.3 Other Features
651(2)
19.1.2 Techniques of Fractography
653(3)
19.1.3 Determining Failure Cause
656(21)
19.1.3.1 Material Flaws
658(1)
19.1.3.2 Machining Damage
659(2)
19.1.3.3 Residual Stresses
661(1)
19.1.3.4 Thermal Shock
662(3)
19.1.3.5 Impact
665(2)
19.1.3.6 Biaxial Contact
667(2)
19.1.3.7 Oxidation-Corrosion
669(4)
19.1.3.8 Slow Crack Growth
673(1)
19.2 Summary
674(1)
References
674(2)
Additional Recommended Reading
676(1)
Study Guide
676(1)
Chapter 20 Toughening of Ceramics
677(62)
20.1 Toughening Mechanisms
677(12)
20.1.1 Modulus Transfer
678(3)
20.1.1.1 Effect of Elastic Modulus
678(1)
20.1.1.2 Effect of Volume Fraction and Architecture
678(2)
20.1.1.3 Effect of Fiber Length
680(1)
20.1.1.4 Effect of Interfacial Bond
681(1)
20.1.2 Prestressing
681(1)
20.1.3 Crack Deflection or Impediment
682(2)
20.1.4 Crack Bridging
684(1)
20.1.5 Pullout
685(1)
20.1.6 Crack Shielding
685(3)
20.1.7 Energy Dissipation
688(1)
20.2 Examples of Toughened Ceramics
689(39)
20.2.1 Self-Reinforced Ceramics
689(4)
20.2.1.1 Self-Reinforced Si3N4
690(1)
20.2.1.2 Self-Reinforced ZrC
690(1)
20.2.1.3 Aluminate Platelet-Reinforced Transformation-Toughened ZrO2
690(1)
20.2.1.4 La beta-Alumina-Reinforced Transformation-Toughened ZrO2
690(3)
20.2.2 Transformation-Toughened Ceramics
693(5)
20.2.2.1 Transformation-Toughened ZrO2
693(4)
20.2.2.2 Other Transformation-Toughened Ceramics
697(1)
20.2.3 Particulate-Reinforced Ceramics
698(1)
20.2.4 Whisker-Reinforced Ceramics
698(1)
20.2.5 A1203 Reinforced with SiC Whiskers
699(5)
20.2.6 Si3N4 Reinforced with SiC and Si3N4 Whiskers
704(1)
20.2.7 MoSi2 and MoSi2-WSi2 Reinforced with SiC Whiskers
704(1)
20.2.8 Fiber-Reinforced Ceramics
704(8)
20.2.8.1 Glass Fibers
704(1)
20.2.8.2 Carbon Fibers
705(2)
20.2.8.3 Oxide Fibers
707(2)
20.2.8.4 Nonoxide Fibers
709(3)
20.2.9 Examples of Ceramic Matrix Composites Reinforced with Ceramic Fibers
712(27)
20.2.9.1 Cement Matrix Composites
712(1)
20.2.9.2 Glass Matrix Composites
712(2)
20.2.9.3 Glass-Ceramic Matrix Composites
714(2)
20.2.9.4 SiC Matrix Composites Fabricated by Chemical Vapor Infiltration
716(3)
20.2.9.5 SiC Matrix Composites Fabricated by Si Melt Infiltration
719(1)
20.2.9.6 SiC Matrix Composites Fabricated by Preceramic Polymer Infiltration
720(1)
20.2.9.7 Oxide Matrix Composites Fabricated by Infiltration
721(1)
20.2.9.8 Si2N4 Matrix Composites
721(3)
20.2.9.9 Other Fiber-Reinforced Ceramic Matrix Composites
724(2)
20.2.10 Composites with Surface Compression
726(1)
20.2.11 Fibrous Monolith
727(1)
20.3 Summary
728(1)
References
729(5)
Problems
734(1)
Study Guide
734(5)
Part V: Applying Ceramics to Real-World Challenges
Chapter 21 Solving Past Challenges: Case Studies
739(32)
21.1 Evolution of the Integrated Circuit
739(7)
21.1.1 Silicon Crystal Growth
741(1)
21.1.2 Slicing, Grinding, and Polishing
742(1)
21.1.3 Doping to Achieve Semiconductor Behavior
742(1)
21.1.4 Buildup of the Device Layers
743(3)
21.2 Evolution of the Flash Memory and the Digital Camera
746(1)
21.3 Challenges of the Digital Watch
747(1)
21.4 Invention and Evolution of the Catalytic Converter
747(3)
21.4.1 Ceramic Material Selection and Development
748(1)
21.4.2 Design Selection and Fabrication Development
748(1)
21.4.3 Improvements in Catalytic Converters
749(1)
21.5 Bioglass and Bioceramics
750(1)
21.6 Refractory Evolution
750(4)
21.6.1 Refractories Development
750(2)
21.6.2 In Situ Refractories
752(2)
21.7 Ceramics in the Nuclear Industry
754(9)
21.7.1 Development of Nuclear Fuel
755(5)
21.7.2 Nuclear Wasteforms
760(3)
21.8 Silicon Nitride: Seeking Uses for a New Material
763(5)
References
768(3)
Chapter 22 Where Next for Ceramics? Future Trends and Challenges
771(16)
22.1 Nanotechnology and Nanoprocessing
771(5)
22.1.1 Review of Importance of Particle Size and Arrangement
771(2)
22.1.2 Further Nanoscale Manipulation
773(6)
22.1.2.1 Control of Chemistry for Self-Assembly and Engineered Structures
773(2)
22.1.2.2 Quantum Dots
775(1)
22.1.2.3 Nanoscale Thin Film Deposition
776(1)
22.1.2.4 Carbon Nanotubes
776(1)
22.2 Ceramics in Environmental Cleanup
776(2)
22.3 Raw Materials Challenges
778(1)
22.4 Modeling
778(1)
22.5 Advances in Processing
779(3)
22.5.1 Additive Layer Manufacture
779(2)
22.5.2 Cold Sintering
781(1)
22.6 Extreme Environment Challenges
782(2)
22.6.1 Thermal and Environmental Barrier Coatings
782(2)
22.6.1.1 Using Coupled Modeling to Help Solve a Materials
Problem
784(1)
References
785(2)
Appendix A: Glossary 787(8)
Appendix B: Effective Ionic Radii for Cations and Anions 795(6)
Appendix C: The Periodic Table of the Elements 801(2)
Index 803
David W. Richerson received degrees in Ceramic Science and Engineering from the University of Utah (1967) and The Pennsylvania State University (1969). He conducted research on boron carbide armor, silicon nitride, and composites at Norton Company from 1969 to 1973; coordinated materials efforts from 1973 to 1985 at Garrett Turbine Engine Company to integrate ceramic materials into gas turbine engines; and conducted and managed a wide range of materials programs while Director of Research and Development and later Vice President at Ceramatec, Inc. from 1985 to 1991. From 1991 to the present Mr. Richerson has worked as a consultant, taught at the University of Utah, and planned and conducted volunteer science outreach projects in schools and in the community. Mr. Richerson has authored or co-authored 9 books, 13 book chapters, 21 government program final reports, 5 patents, and 59 technical publications and has made numerous technical and educational presentations including two-day to four-day short courses worldwide. Mr. Richerson is a Fellow and past board member of the American Ceramic Society, a member of the National Institute of Ceramic Engineers and the Ceramic Education Council, and a past member of ASM International.

William E. Lee received a BSc in Physical Metallurgy from Aston University in the UK (1980) and a DPhil from Oxford University (1983) on radiation damage in sapphire. After post-doctoral research at Case Western Reserve University he became an Assistant Professor at the Ohio State University USA before returning to a lectureship at Sheffield University in the UK in 1989 and becoming Professor there in 1998. He moved to be head of the Materials Department at Imperial College London in 2006. His research has covered structure-property-processing relations in a range of ceramics including electroceramics, glasses and glass ceramics, nuclear ceramics, refractories, Ultra-high Temperature Ceramics and whitewares. He has supervised 61 students to completion of their PhDs, and authored and co-authored over 400 articles including 5 books, 7 edited proceedings or journal special issues, 6 invited book/encyclopaedia chapters and 14 invited review papers. Prof. Lee is a Fellow of the UKs Royal Academy of Engineering, the City and Guilds Institute, the Institute of Materials, Minerals and Mining and the American Ceramic Society for whom he was President in 2016/17.