Preface |
|
xxi | |
Authors |
|
xxiii | |
Part I: Ceramics as Engineering Materials |
|
|
Chapter 1 What Is a Ceramic? |
|
|
3 | (6) |
|
1.1 Definitions of Ceramics |
|
|
3 | (1) |
|
1.2 Material Types Generally Considered in the Ceramics Family |
|
|
3 | (2) |
|
1.2.1 Polycrystalline Ceramics Fabricated by Sintering |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
1.2.4 Single Crystals of Ceramic Compositions |
|
|
4 | (1) |
|
1.2.5 Chemical Synthesis or Bonding |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.3 So What Is a Ceramic? |
|
|
5 | (1) |
|
Special Optional Assignment |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
Chapter 2 History of Ceramics |
|
|
9 | (16) |
|
2.1 Ceramics in the Stone Age |
|
|
9 | (4) |
|
2.1.1 Use of Natural Ceramics |
|
|
9 | (2) |
|
2.1.2 Synthetic Stone: Clay Transformed by Fire |
|
|
11 | (1) |
|
2.1.3 First Practical Use of Earthenware |
|
|
11 | (1) |
|
2.1.4 Other Neolithic Ceramic Innovations |
|
|
12 | (1) |
|
2.2 Rise of Traditional Ceramic Industries |
|
|
13 | (8) |
|
2.2.1 Ceramic Innovations during the Chalcolithic Period |
|
|
13 | (2) |
|
2.2.2 Ceramics and the Metal Ages |
|
|
15 | (1) |
|
|
15 | (1) |
|
2.2.4 Ceramics in Building |
|
|
16 | (4) |
|
|
20 | (1) |
|
2.3 From Traditional to Modern Ceramics |
|
|
21 | (2) |
|
|
23 | (1) |
|
|
23 | (1) |
|
Additional Recommended Reading on Technical Aspects of Traditional Ceramics |
|
|
23 | (1) |
|
|
23 | (2) |
|
Chapter 3 Applications: Engineering with Ceramics |
|
|
25 | (72) |
|
3.1 High-Temperature Applications |
|
|
25 | (14) |
|
3.1.1 Ceramics in Metal Processing |
|
|
25 | (4) |
|
|
29 | (1) |
|
3.1.3 Industrial Processes |
|
|
29 | (5) |
|
3.1.3.1 Furnace and Reaction Vessel Linings |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (3) |
|
3.1.3.4 Heat Exchange for Chemical Processing |
|
|
33 | (1) |
|
|
34 | (5) |
|
3.1.4.1 Gas Turbine Engines |
|
|
34 | (3) |
|
3.1.4.2 Internal Combustion Engines |
|
|
37 | (1) |
|
|
38 | (1) |
|
3.2 Wear and Corrosion Resistance Applications |
|
|
39 | (10) |
|
|
39 | (4) |
|
|
43 | (3) |
|
|
46 | (1) |
|
|
46 | (2) |
|
|
48 | (1) |
|
3.2.6 Ceramics in Papermaking |
|
|
49 | (1) |
|
|
49 | (5) |
|
3.3.1 Ceramic Cutting Tool Inserts |
|
|
50 | (3) |
|
3.3.2 Superhard Abrasives |
|
|
53 | (1) |
|
|
53 | (1) |
|
3.4 Electrical Applications of Ceramics |
|
|
54 | (10) |
|
3.4.1 Ceramic Electrical Insulators |
|
|
54 | (3) |
|
3.4.2 Dielectric Ceramics |
|
|
57 | (1) |
|
|
58 | (2) |
|
3.4.4 Electrical Conductors |
|
|
60 | (3) |
|
3.4.5 Ceramic Superconductors |
|
|
63 | (1) |
|
|
64 | (1) |
|
3.6 Optical Applications of Ceramics |
|
|
65 | (6) |
|
3.6.1 Applications Based on Transparency |
|
|
66 | (3) |
|
|
66 | (2) |
|
|
68 | (1) |
|
3.6.1.3 Optical Glass Fibers |
|
|
68 | (1) |
|
|
68 | (1) |
|
3.6.2 Applications Based on Phosphorescence and Fluorescence |
|
|
69 | (3) |
|
3.6.2.1 Fluorescent Light |
|
|
69 | (1) |
|
3.6.2.2 Television and Oscilloscopes |
|
|
69 | (1) |
|
3.6.2.3 Electroluminescent Lamps |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
3.8 Medical Applications of Ceramics |
|
|
72 | (9) |
|
3.8.1 Replacement and Repair |
|
|
72 | (4) |
|
|
72 | (2) |
|
|
74 | (1) |
|
|
75 | (1) |
|
3.8.1.4 Middle-Ear Implants |
|
|
75 | (1) |
|
|
75 | (1) |
|
3.8.1.6 Heart Valve Implants |
|
|
76 | (1) |
|
3.8.1.7 Prosthetic Devices |
|
|
76 | (1) |
|
3.8.2 Ceramics for Medical Diagnosis |
|
|
76 | (3) |
|
|
76 | (1) |
|
|
77 | (1) |
|
3.8.2.3 Ultrasound Imaging |
|
|
78 | (1) |
|
3.8.3 Ceramics in Medical Treatment and Therapy |
|
|
79 | (2) |
|
3.9 Energy Efficiency and Pollution Control |
|
|
81 | (6) |
|
3.9.1 Energy Savings in the Home |
|
|
81 | (3) |
|
3.9.1.1 Fiberglass Insulation |
|
|
81 | (1) |
|
3.9.1.2 Efficient Light Sources |
|
|
82 | (2) |
|
|
84 | (1) |
|
3.9.2 Ceramics for Power Generation |
|
|
84 | (1) |
|
3.9.3 Ceramics in the Transportation Sector |
|
|
85 | (2) |
|
3.9.4 Other Uses of Ceramics for Energy Efficiency and Pollution Control |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
3.12 Ceramics Modeling and Simulation |
|
|
89 | (3) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (4) |
Part II: Structures and Properties |
|
|
Chapter 4 Atomic Bonding and Crystal Structure |
|
|
97 | (26) |
|
4.1 Electronic Configuration of Atoms |
|
|
97 | (3) |
|
|
100 | (11) |
|
|
102 | (1) |
|
|
102 | (5) |
|
|
107 | (2) |
|
4.2.4 Ionic and Covalent Bond Combinations |
|
|
109 | (1) |
|
4.2.5 van der Waals Bonds |
|
|
109 | (2) |
|
4.3 Polymorphic Forms and Transformations |
|
|
111 | (2) |
|
4.4 Noncrystalline Structures |
|
|
113 | (2) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (5) |
|
|
115 | (1) |
|
4.5.2 Addition Polymerization |
|
|
116 | (1) |
|
4.5.3 Condensation Polymerization |
|
|
117 | (1) |
|
4.5.4 Polymer Crystallization |
|
|
118 | (1) |
|
4.5.5 Cross-Linking and Branching |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
120 | (3) |
|
Chapter 5 Crystal Chemistry and Specific Crystal Structures |
|
|
123 | (40) |
|
5.1 Crystal Structure Notations |
|
|
123 | (4) |
|
5.1.1 Crystal Systems and Bravais Lattices |
|
|
123 | (1) |
|
5.1.2 Crystal Directions and Planes |
|
|
123 | (4) |
|
5.1.3 Structure, Composition, and Coordination Notations |
|
|
127 | (1) |
|
5.2 Crystal Chemistry of Ceramics |
|
|
127 | (6) |
|
5.2.1 Crystal Chemistry Concepts |
|
|
128 | (3) |
|
|
128 | (1) |
|
|
128 | (2) |
|
|
130 | (1) |
|
5.2.2 Crystal Chemical Substitutions |
|
|
131 | (1) |
|
5.2.3 Derivative Structures |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
5.3 Metallic and Ceramic Crystal Structures |
|
|
133 | (27) |
|
5.3.1 Metallic Crystal Structures |
|
|
133 | (1) |
|
5.3.2 Ceramic Structures with a Single Element |
|
|
134 | (4) |
|
5.3.3 Binary Ceramic Structures |
|
|
138 | (6) |
|
5.3.3.1 [ Rock Salt] Structure A[ 6]X[ 6] |
|
|
139 | (1) |
|
5.3.3.2 [ Nickel Arsenide] Structure A[ 6]X[ 6] |
|
|
139 | (1) |
|
5.3.3.3 [ Cesium Chloride] Structure A[ 8]X[ 8] |
|
|
139 | (1) |
|
5.3.3.4 [ Zinc Blende] and [ Wurtzite] Structures A[ 4]X[ 4] |
|
|
139 | (1) |
|
5.3.3.5 [ Fluorite] Structure A[ 8]X[ 42 |
|
|
140 | (1) |
|
5.3.3.6 [ Antifluorite] Structure A[ 4]X[ 8] |
|
|
141 | (1) |
|
5.3.3.7 [ Rutile] Structure A[ 6]X[ 3] |
|
|
141 | (1) |
|
5.3.3.8 Silica Structures A[ 4]X[ 2]2 |
|
|
142 | (2) |
|
5.3.3.9 [ Corundum] Structure A[ 6]2X[ 43 |
|
|
144 | (1) |
|
5.3.4 Ternary Ceramic Structures |
|
|
144 | (8) |
|
|
145 | (3) |
|
|
148 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
5.3.4.5 Carbide and Nitride Structures |
|
|
151 | (1) |
|
5.3.5 Crystal Defects and Stoichiometry |
|
|
152 | (11) |
|
5.3.5.1 Zero-Dimensional (Point) Defects |
|
|
152 | (2) |
|
5.3.5.2 One-Dimensional (Line) Defects |
|
|
154 | (1) |
|
5.3.5.3 Two-Dimensional (Planar) Defects |
|
|
154 | (5) |
|
5.3.5.4 Three-Dimensional (Volume) Defects |
|
|
159 | (1) |
|
5.3.5.5 Accommodating Nonstoichiometry in Crystals |
|
|
160 | (1) |
|
|
160 | (1) |
|
Additional Recommended Reading |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
Chapter 6 Phase Equilibria and Phase Equilibrium Diagrams |
|
|
163 | (40) |
|
6.1 Phase Equilibrium Diagrams |
|
|
163 | (25) |
|
6.1.1 Concept of Phase Equilibria |
|
|
164 | (1) |
|
|
164 | (1) |
|
6.1.3 One-Component Phase Diagrams |
|
|
165 | (1) |
|
6.1.4 Two-Component Systems |
|
|
166 | (3) |
|
6.1.4.1 Binary Eutectic Systems |
|
|
168 | (1) |
|
6.1.5 Intermediate Compounds |
|
|
169 | (8) |
|
|
174 | (1) |
|
6.1.5.2 Liquid Immiscibility |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
176 | (1) |
|
6.1.6 Three-Component Systems |
|
|
177 | (11) |
|
6.1.6.1 Simple Eutectic Ternary Diagram |
|
|
177 | (4) |
|
6.1.6.2 Ternary System with Congruently Melting Binary Compound AB |
|
|
181 | (1) |
|
6.1.6.3 Ternary System with Incongruently Melting Binary Compound AB |
|
|
182 | (1) |
|
6.1.6.4 Ternary Compounds |
|
|
183 | (1) |
|
6.1.6.5 Polymorphic Transformations |
|
|
183 | (1) |
|
6.1.6.6 Immiscible Liquids in Ternary Systems |
|
|
183 | (2) |
|
6.1.6.7 Solid Solution in Ternary Systems |
|
|
185 | (2) |
|
6.1.6.8 Real Ternary Systems |
|
|
187 | (1) |
|
6.2 Phase Equilibrium Diagram Composition Calculations |
|
|
188 | (5) |
|
6.2.1 Composition Conversions |
|
|
188 | (3) |
|
6.2.2 Binary Composition Calculations |
|
|
191 | (1) |
|
6.2.3 Ternary Composition Calculations |
|
|
192 | (1) |
|
6.3 Isoplethal Crystallization Paths |
|
|
193 | (3) |
|
6.3.1 Binary Isoplethal Analysis |
|
|
193 | (1) |
|
6.3.2 Ternary System Isoplethal Analysis |
|
|
194 | (2) |
|
6.4 Nonequilibrium Behavior |
|
|
196 | (3) |
|
|
197 | (1) |
|
6.4.2 Rapid Heating or Cooling |
|
|
197 | (1) |
|
6.4.3 Nucleation Difficulty |
|
|
198 | (1) |
|
6.4.4 Elastic Constraint of a Polymorphic Transformation |
|
|
198 | (1) |
|
6.4.5 Additional Information on Nonequilibrium |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (3) |
|
Chapter 7 Physical and Thermal Behavior |
|
|
203 | (32) |
|
|
203 | (9) |
|
|
203 | (6) |
|
7.1.1.1 Crystallographic Density |
|
|
203 | (2) |
|
|
205 | (1) |
|
7.1.1.3 Theoretical Density |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (2) |
|
7.1.1.6 Density Comparisons |
|
|
209 | (1) |
|
|
209 | (3) |
|
|
212 | (9) |
|
|
212 | (1) |
|
7.2.2 Thermal Conductivity |
|
|
213 | (8) |
|
|
221 | (9) |
|
7.3.1 Factors Influencing Thermal Expansion |
|
|
222 | (13) |
|
7.3.1.1 Thermal Expansion of Metals |
|
|
222 | (1) |
|
7.3.1.2 Thermal Expansion of Ceramics |
|
|
223 | (5) |
|
7.3.1.3 Thermal Expansion of Noncrystalline Solids |
|
|
228 | (1) |
|
7.3.1.4 Thermal Expansion of Organic Solids |
|
|
228 | (1) |
|
7.3.1.5 Importance of Thermal Expansion |
|
|
228 | (1) |
|
7.3.1.6 Simulating Thermal Properties |
|
|
229 | (1) |
|
7.3.1.7 Thermal Properties in the Future |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (3) |
|
Chapter 8 Mechanical Behavior and Measurement |
|
|
235 | (34) |
|
|
235 | (5) |
|
8.1.1 Modulus of Elasticity |
|
|
236 | (4) |
|
8.1.2 Elastic Modulus Measurement |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
240 | (14) |
|
8.2.1 Theoretical Strength |
|
|
241 | (1) |
|
8.2.2 Effects of Flaw Size |
|
|
242 | (4) |
|
|
244 | (1) |
|
8.2.2.2 Pore-Crack Combinations |
|
|
244 | (1) |
|
|
244 | (2) |
|
|
246 | (1) |
|
|
246 | (1) |
|
8.2.3 Strength Measurement |
|
|
246 | (6) |
|
|
246 | (2) |
|
8.2.3.2 Compressive Strength |
|
|
248 | (1) |
|
|
249 | (2) |
|
|
251 | (1) |
|
8.2.4 Strength Data for Ceramic Materials |
|
|
252 | (2) |
|
|
254 | (3) |
|
8.4 Ductile versus Brittle Behavior |
|
|
257 | (7) |
|
8.4.1 Mechanism of Plastic Deformation |
|
|
257 | (1) |
|
8.4.2 Deformation Behavior of Metals |
|
|
258 | (2) |
|
8.4.3 Deformation Behavior in Ceramics |
|
|
260 | (4) |
|
|
260 | (4) |
|
8.4.3.2 Polycrystalline Ceramics |
|
|
264 | (1) |
|
8.4.4 Ceramics Deformation Summary |
|
|
264 | (1) |
|
8.5 Advanced Mechanical Testing Techniques and Modeling |
|
|
264 | (1) |
|
|
265 | (1) |
|
Additional Recommended Reading |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
Chapter 9 Time, Temperature, and Environmental Effects on Properties |
|
|
269 | (46) |
|
|
269 | (9) |
|
9.1.1 Effects of Temperature and Stress on Creep |
|
|
270 | (1) |
|
9.1.2 Effects of Single-Crystal Structure on Creep |
|
|
271 | (1) |
|
9.1.3 Effects of Microstructure of Polycrystalline Ceramics on Creep |
|
|
272 | (1) |
|
9.1.4 Creep in Noncrystalline Ceramics |
|
|
273 | (1) |
|
9.1.5 Effects of Composition, Stoichiometry, and Environment |
|
|
274 | (1) |
|
9.1.6 Measurement of Creep |
|
|
274 | (3) |
|
9.1.7 Creep Consideration for Component Design |
|
|
277 | (1) |
|
|
278 | (3) |
|
|
281 | (16) |
|
9.3.1 Gas-Solid Reactions |
|
|
282 | (7) |
|
|
282 | (4) |
|
9.3.1.2 Reduction and Other Reactions |
|
|
286 | (1) |
|
|
287 | (1) |
|
9.3.1.4 Interactions with Water Vapor |
|
|
288 | (1) |
|
9.3.1.5 Vaporization and Dissociation |
|
|
289 | (1) |
|
9.3.2 Liquid-Solid Reactions |
|
|
289 | (8) |
|
9.3.2.1 Ambient Temperature Corrosion |
|
|
290 | (1) |
|
9.3.2.2 High-Temperature Corrosion of Oxides |
|
|
290 | (2) |
|
9.3.2.3 Condensed-Phase Corrosion |
|
|
292 | (3) |
|
9.3.2.4 Corrosion in Coal Combustion Environments |
|
|
295 | (2) |
|
9.3.3 Solid-Solid Reactions |
|
|
297 | (1) |
|
9.4 Mechanically Induced Effects |
|
|
297 | (6) |
|
9.4.1 Surface Flaw Formation |
|
|
297 | (4) |
|
9.4.2 Removal of Surface Material |
|
|
301 | (2) |
|
|
303 | (7) |
|
|
310 | (2) |
|
|
312 | (1) |
|
|
313 | (2) |
|
Chapter 10 Electrical Behavior |
|
|
315 | (40) |
|
10.1 Fundamentals and Definitions |
|
|
315 | (1) |
|
10.2 Electronic Conductivity |
|
|
316 | (4) |
|
|
320 | (13) |
|
10.3.1 Mechanisms of Ionic Conductivity |
|
|
320 | (1) |
|
10.3.2 Ceramic Materials Exhibiting Ionic Conductivity |
|
|
321 | (2) |
|
10.3.3 Applications of Zirconia Oxygen Ion Conductive Ceramics |
|
|
323 | (6) |
|
|
323 | (2) |
|
|
325 | (1) |
|
10.3.3.3 Electrolysis and Thermolysis |
|
|
326 | (1) |
|
10.3.3.4 SOx-NOx Decomposition |
|
|
326 | (1) |
|
10.3.3.5 Solid Oxide Fuel Cells |
|
|
326 | (2) |
|
10.3.3.6 Resistance Heating Elements |
|
|
328 | (1) |
|
10.3.3.7 Galvanic Cells for Thermodynamic and Kinetic Measurements |
|
|
329 | (1) |
|
10.3.4 Alternative Oxygen Ion Conductors |
|
|
329 | (1) |
|
10.3.5 Sodium Ion Conductors and Applications |
|
|
329 | (3) |
|
10.3.6 Lithium Ion Conduction and Applications |
|
|
332 | (1) |
|
|
333 | (1) |
|
10.5 Electrical Insulators |
|
|
333 | (5) |
|
10.5.1 Applications of Electrical Insulators |
|
|
335 | (3) |
|
10.5.1.1 Integrated Circuit Substrates and Packages |
|
|
336 | (2) |
|
10.5.1.2 Spark Plug Insulators |
|
|
338 | (1) |
|
10.5.1.3 Power Line Insulators |
|
|
338 | (1) |
|
|
338 | (7) |
|
10.6.1 Mechanisms of Semiconduction |
|
|
338 | (3) |
|
10.6.2 Applications of Ceramic Semiconductors |
|
|
341 | (1) |
|
10.6.3 Photovoltaic Semiconductors |
|
|
342 | (3) |
|
|
345 | (7) |
|
10.7.1 Mechanism of Superconductivity |
|
|
345 | (2) |
|
10.7.2 Characteristics of Superconductivity |
|
|
347 | (1) |
|
10.7.3 Evolution of Superconductor Materials |
|
|
348 | (1) |
|
10.7.4 Structure of High-Tc Ceramic Superconductors |
|
|
349 | (1) |
|
10.7.5 Characteristics of the 1:2:3 Ceramic Superconductor |
|
|
349 | (2) |
|
10.7.6 Applications of Superconductors |
|
|
351 | (1) |
|
|
352 | (1) |
|
Additional Recommended Reading |
|
|
353 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
|
Chapter 11 Dielectric, Magnetic, and Optical Behavior |
|
|
355 | (48) |
|
11.1 Dielectric Properties |
|
|
355 | (25) |
|
|
355 | (1) |
|
11.1.2 Dielectric Constant |
|
|
356 | (2) |
|
11.1.3 Dielectric Strength |
|
|
358 | (1) |
|
|
358 | (3) |
|
|
361 | (6) |
|
11.1.5.1 Functions of a Capacitor |
|
|
364 | (1) |
|
11.1.5.2 History of Capacitors |
|
|
364 | (1) |
|
11.1.5.3 Mechanism of High Dielectric Constant |
|
|
364 | (2) |
|
11.1.5.4 Types of Capacitors |
|
|
366 | (1) |
|
|
367 | (2) |
|
|
369 | (1) |
|
|
369 | (11) |
|
11.1.8.1 Types of Ferroelectric Crystals |
|
|
372 | (1) |
|
11.1.8.2 Polycrystalline Ferroelectrics |
|
|
372 | (8) |
|
|
380 | (8) |
|
11.2.1 Source of Magnetism |
|
|
380 | (4) |
|
11.2.2 Magnetic Terminology |
|
|
384 | (1) |
|
11.2.3 Applications of Magnetic Ceramics |
|
|
385 | (3) |
|
|
388 | (9) |
|
11.3.1 Absorption and Transparency |
|
|
388 | (2) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
11.3.5 Index of Refraction |
|
|
393 | (4) |
|
11.3.6 Electro-Optics and Integrated Optic Devices |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
399 | (4) |
Part III: Processing of Ceramics |
|
|
Chapter 12 Introduction to Ceramic Fabrication Approaches Including Powder Processing |
|
|
403 | (44) |
|
12.1 General Ceramic Processing Approaches |
|
|
403 | (10) |
|
12.1.1 Conventional Ceramic Processing by Compaction of Powders |
|
|
403 | (2) |
|
12.1.2 Refractory Processing |
|
|
405 | (1) |
|
12.1.3 Melting and Fusion Ceramic Processing |
|
|
406 | (3) |
|
12.1.4 Room-or Low-Temperature Processing |
|
|
409 | (1) |
|
12.1.5 Other Ceramic Processing Options |
|
|
409 | (4) |
|
|
410 | (1) |
|
12.1.5.2 Infiltration Processes |
|
|
410 | (1) |
|
12.1.5.3 Metal-Gas Reaction |
|
|
411 | (1) |
|
|
412 | (1) |
|
12.1.5.5 Advanced and Emerging Processes |
|
|
412 | (1) |
|
|
413 | (5) |
|
|
414 | (2) |
|
12.2.1.1 Traditional Ceramics |
|
|
414 | (1) |
|
|
414 | (2) |
|
12.2.2 Raw Material Selection Criteria |
|
|
416 | (2) |
|
|
416 | (1) |
|
12.2.2.2 Particle Size and Reactivity |
|
|
417 | (1) |
|
12.3 Powder Preparation and Sizing |
|
|
418 | (18) |
|
|
418 | (11) |
|
|
418 | (2) |
|
12.3.1.2 Air Classification |
|
|
420 | (1) |
|
|
421 | (1) |
|
|
422 | (3) |
|
12.3.1.5 Attrition Milling |
|
|
425 | (1) |
|
12.3.1.6 Vibratory Milling |
|
|
426 | (2) |
|
12.3.1.7 Fluid Energy Milling |
|
|
428 | (1) |
|
|
428 | (1) |
|
|
428 | (1) |
|
12.3.1.10 Miscellaneous Crushing |
|
|
429 | (1) |
|
|
429 | (6) |
|
|
429 | (1) |
|
|
429 | (1) |
|
12.3.2.3 Hot Kerosene Drying |
|
|
430 | (1) |
|
|
431 | (1) |
|
12.3.2.5 Liquid Mix Process |
|
|
432 | (1) |
|
|
432 | (1) |
|
|
433 | (1) |
|
12.3.2.8 Hydrothermal Synthesis |
|
|
433 | (2) |
|
12.3.2.9 Plasma Techniques |
|
|
435 | (1) |
|
12.3.2.10 Laser Techniques |
|
|
435 | (1) |
|
12.3.3 Miscellaneous Powder Synthesis/Sizing Techniques |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
435 | (1) |
|
|
436 | (1) |
|
12.3.3.4 Self-Propagating Combustion |
|
|
436 | (1) |
|
12.3.3.5 Gas Condensation |
|
|
436 | (1) |
|
|
436 | (5) |
|
|
437 | (2) |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
441 | (2) |
|
|
443 | (2) |
|
Additional Recommended Reading |
|
|
445 | (1) |
|
|
445 | (1) |
|
|
445 | (2) |
|
Chapter 13 Shape-Forming Processes |
|
|
447 | (76) |
|
|
447 | (19) |
|
|
447 | (1) |
|
13.1.2 Selection of Additives |
|
|
448 | (7) |
|
13.1.2.1 Binders and Plasticizers |
|
|
448 | (5) |
|
13.1.2.2 Lubricants and Compaction Aids |
|
|
453 | (1) |
|
13.1.2.3 Removal of Organic Additives |
|
|
454 | (1) |
|
13.1.3 Uniaxial Pressing: Presses and Tooling |
|
|
455 | (6) |
|
|
457 | (1) |
|
|
457 | (1) |
|
13.1.3.3 Uniaxial Pressing Problems |
|
|
457 | (4) |
|
13.1.4 Isostatic Pressing |
|
|
461 | (4) |
|
13.1.4.1 Wet-Bag Isostatic Pressing |
|
|
463 | (1) |
|
13.1.4.2 Dry-Bag Isostatic Pressing |
|
|
464 | (1) |
|
13.1.5 Applications of Pressing |
|
|
465 | (1) |
|
|
466 | (23) |
|
|
466 | (20) |
|
|
466 | (1) |
|
13.2.1.2 Powder Processing |
|
|
467 | (1) |
|
13.2.1.3 Slip Preparation and Rheology |
|
|
468 | (1) |
|
13.2.1.4 Particle Size and Shape Effects |
|
|
468 | (2) |
|
13.2.1.5 Particle Surface Effects |
|
|
470 | (7) |
|
13.2.1.6 Slip Preparation |
|
|
477 | (1) |
|
13.2.1.7 Mold Preparation |
|
|
478 | (1) |
|
|
479 | (6) |
|
13.2.1.9 Casting Process Control |
|
|
485 | (1) |
|
|
485 | (1) |
|
|
486 | (3) |
|
13.2.2.1 Doctor Blade Process |
|
|
486 | (1) |
|
13.2.2.2 Other Tape-Casting Processes |
|
|
486 | (1) |
|
13.2.2.3 Preparation of Tape-Casting Slurries |
|
|
487 | (1) |
|
13.2.2.4 Applications of Tape Casting |
|
|
488 | (1) |
|
|
489 | (26) |
|
|
491 | (9) |
|
13.3.1.1 Extrusion Equipment |
|
|
491 | (1) |
|
13.3.1.2 Binders and Additives for Extrusion |
|
|
492 | (3) |
|
|
495 | (3) |
|
13.3.1.4 Common Extrusion Defects |
|
|
498 | (1) |
|
13.3.1.5 Applications of Extrusion |
|
|
499 | (1) |
|
|
500 | (14) |
|
13.3.2.1 Injection-Molding Parameters |
|
|
500 | (5) |
|
13.3.2.2 Injection-Molding Defects |
|
|
505 | (5) |
|
13.3.2.3 Applications of Injection Molding |
|
|
510 | (1) |
|
13.3.2.4 Nonthermoplastic Injection Molding |
|
|
511 | (3) |
|
13.3.3 Compression Molding |
|
|
514 | (1) |
|
|
514 | (1) |
|
|
515 | (1) |
|
|
515 | (1) |
|
|
516 | (2) |
|
Additional Recommended Reading |
|
|
518 | (1) |
|
|
518 | (2) |
|
|
520 | (3) |
|
|
523 | (54) |
|
|
523 | (19) |
|
14.1.1 Stages of Sintering |
|
|
523 | (2) |
|
14.1.2 Mechanisms of Sintering |
|
|
525 | (11) |
|
14.1.2.1 Vapor-Phase Sintering |
|
|
525 | (2) |
|
14.1.2.2 Solid-State Sintering |
|
|
527 | (6) |
|
14.1.2.3 Liquid-Phase Sintering |
|
|
533 | (1) |
|
14.1.2.4 Reactive Liquid Sintering |
|
|
534 | (2) |
|
14.1.3 Control of Conventional Sintering |
|
|
536 | (4) |
|
|
537 | (1) |
|
14.1.3.2 Time and Temperature Cycle |
|
|
537 | (1) |
|
14.1.3.3 Design of the Furnace |
|
|
537 | (3) |
|
14.1.4 Sintering Problems |
|
|
540 | (2) |
|
|
540 | (1) |
|
|
541 | (1) |
|
14.1.4.3 Burn-Off of Binders |
|
|
541 | (1) |
|
14.1.4.4 Decomposition Reactions |
|
|
541 | (1) |
|
14.1.4.5 Polymorphic Transformations |
|
|
542 | (1) |
|
14.2 Modified Densification Processes |
|
|
542 | (30) |
|
14.2.1 Modified Particulate Processes |
|
|
542 | (2) |
|
14.2.1.1 Overpressure Sintering |
|
|
542 | (2) |
|
|
544 | (6) |
|
14.2.2.1 Unique Hot-Pressed Properties |
|
|
547 | (1) |
|
14.2.2.2 Hot-Pressing Limitations |
|
|
548 | (2) |
|
14.2.3 Hot Isostatic Pressing |
|
|
550 | (2) |
|
14.2.4 Field-Assisted Sintering Techniques |
|
|
552 | (2) |
|
14.2.5 Chemical Processes |
|
|
554 | (5) |
|
14.2.5.1 Chemical Reaction |
|
|
554 | (5) |
|
14.2.6 Cementitious Bonding |
|
|
559 | (1) |
|
|
560 | (2) |
|
|
562 | (1) |
|
14.2.8.1 Casting, Drawing, and Blowing |
|
|
562 | (1) |
|
|
562 | (1) |
|
|
563 | (4) |
|
|
567 | (4) |
|
|
571 | (1) |
|
14.2.12 Metal-Gas Reaction |
|
|
571 | (1) |
|
|
572 | (2) |
|
Additional Recommended Reading |
|
|
574 | (1) |
|
|
575 | (1) |
|
|
575 | (2) |
|
Chapter 15 Final Machining |
|
|
577 | (18) |
|
15.1 Mechanisms of Material Removal |
|
|
577 | (4) |
|
15.1.1 Mounted-Abrasive Machining |
|
|
577 | (1) |
|
15.1.2 Free-Abrasive Machining |
|
|
578 | (1) |
|
15.1.3 Impact Abrasive Machining |
|
|
578 | (1) |
|
15.1.4 Chemical Machining |
|
|
579 | (1) |
|
|
579 | (1) |
|
15.1.5 Electrical Discharge Machining |
|
|
579 | (1) |
|
|
580 | (1) |
|
|
581 | (11) |
|
15.2.1 Effect of Grinding Direction |
|
|
582 | (1) |
|
15.2.2 Effects of Microstructure |
|
|
583 | (1) |
|
15.2.3 Effects of Grinding Parameters |
|
|
584 | (2) |
|
15.2.4 Optimization of Grinding |
|
|
586 | (12) |
|
|
588 | (2) |
|
|
590 | (1) |
|
|
590 | (1) |
|
15.2.4.4 Chemical Etching |
|
|
590 | (1) |
|
15.2.4.5 Surface Compression |
|
|
590 | (1) |
|
|
591 | (1) |
|
15.3 Additional Sources of Information |
|
|
592 | (1) |
|
|
592 | (1) |
|
Additional Recommended Reading |
|
|
593 | (1) |
|
|
593 | (1) |
|
|
594 | (1) |
|
Chapter 16 Quality Assurance |
|
|
595 | (28) |
|
|
595 | (1) |
|
16.2 Specification and Certification |
|
|
596 | (2) |
|
|
598 | (1) |
|
16.4 Nondestructive Inspection |
|
|
598 | (11) |
|
|
599 | (1) |
|
|
599 | (4) |
|
16.4.2.1 Conventional X-Ray Radiography |
|
|
599 | (2) |
|
16.4.2.2 Microfocus X-Ray Radiography |
|
|
601 | (1) |
|
16.4.2.3 Image Enhancement |
|
|
601 | (2) |
|
16.4.3 Computed Tomography |
|
|
603 | (3) |
|
|
606 | (3) |
|
16.4.5 Other NDI Techniques |
|
|
609 | (1) |
|
16.5 Quality Problem Solving and Improvement |
|
|
609 | (7) |
|
16.5.1 Nature of Variation in a Fabrication Process |
|
|
609 | (1) |
|
16.5.2 SPC Tools and Techniques |
|
|
610 | (5) |
|
|
610 | (1) |
|
|
611 | (1) |
|
|
612 | (1) |
|
|
612 | (1) |
|
16.5.2.5 Cause and Effect Diagram (Fishbone Diagram) |
|
|
612 | (1) |
|
16.5.2.6 Five-Whys Diagram |
|
|
613 | (1) |
|
16.5.2.7 Run Charts and Control Charts |
|
|
613 | (2) |
|
16.5.3 Use of SPC Tools for Continuous Improvement |
|
|
615 | (1) |
|
16.5.4 QA Perspective of the End User |
|
|
616 | (1) |
|
16.6 Future Developments in QA |
|
|
616 | (1) |
|
|
616 | (2) |
|
Additional Recommended Reading |
|
|
618 | (1) |
|
|
618 | (1) |
|
|
618 | (5) |
Part IV: Design with Ceramics |
|
|
Chapter 17 Design Considerations |
|
|
623 | (8) |
|
17.1 Requirements of the Application |
|
|
623 | (1) |
|
17.2 Property Limitations |
|
|
624 | (2) |
|
17.3 Fabrication Limitations |
|
|
626 | (2) |
|
|
628 | (1) |
|
17.5 Reliability Requirements |
|
|
628 | (1) |
|
|
629 | (1) |
|
|
629 | (1) |
|
|
629 | (2) |
|
Chapter 18 Design Approaches |
|
|
631 | (16) |
|
|
631 | (1) |
|
18.2 Deterministic Design |
|
|
631 | (3) |
|
18.3 Probabilistic Design |
|
|
634 | (7) |
|
18.3.1 Weibull Statistics |
|
|
634 | (5) |
|
18.3.2 Use of the Weibull Distribution in Design |
|
|
639 | (1) |
|
18.3.3 Advantages of Probabilistic Design |
|
|
639 | (2) |
|
18.3.4 Limitations of Probabilistic Design |
|
|
641 | (1) |
|
18.4 Linear Elastic Fracture Mechanics Approach |
|
|
641 | (1) |
|
|
642 | (1) |
|
18.6 Computer-Assisted Design |
|
|
642 | (1) |
|
|
643 | (1) |
|
Additional Recommended Reading |
|
|
643 | (1) |
|
|
644 | (1) |
|
|
645 | (2) |
|
Chapter 19 Failure Analysis |
|
|
647 | (30) |
|
|
647 | (27) |
|
19.1.1 Location of the Fracture Origin |
|
|
648 | (5) |
|
19.1.1.1 Fracture Mirror and Hackle |
|
|
649 | (2) |
|
|
651 | (1) |
|
|
651 | (2) |
|
19.1.2 Techniques of Fractography |
|
|
653 | (3) |
|
19.1.3 Determining Failure Cause |
|
|
656 | (21) |
|
|
658 | (1) |
|
19.1.3.2 Machining Damage |
|
|
659 | (2) |
|
19.1.3.3 Residual Stresses |
|
|
661 | (1) |
|
|
662 | (3) |
|
|
665 | (2) |
|
|
667 | (2) |
|
19.1.3.7 Oxidation-Corrosion |
|
|
669 | (4) |
|
19.1.3.8 Slow Crack Growth |
|
|
673 | (1) |
|
|
674 | (1) |
|
|
674 | (2) |
|
Additional Recommended Reading |
|
|
676 | (1) |
|
|
676 | (1) |
|
Chapter 20 Toughening of Ceramics |
|
|
677 | (62) |
|
20.1 Toughening Mechanisms |
|
|
677 | (12) |
|
|
678 | (3) |
|
20.1.1.1 Effect of Elastic Modulus |
|
|
678 | (1) |
|
20.1.1.2 Effect of Volume Fraction and Architecture |
|
|
678 | (2) |
|
20.1.1.3 Effect of Fiber Length |
|
|
680 | (1) |
|
20.1.1.4 Effect of Interfacial Bond |
|
|
681 | (1) |
|
|
681 | (1) |
|
20.1.3 Crack Deflection or Impediment |
|
|
682 | (2) |
|
|
684 | (1) |
|
|
685 | (1) |
|
|
685 | (3) |
|
20.1.7 Energy Dissipation |
|
|
688 | (1) |
|
20.2 Examples of Toughened Ceramics |
|
|
689 | (39) |
|
20.2.1 Self-Reinforced Ceramics |
|
|
689 | (4) |
|
20.2.1.1 Self-Reinforced Si3N4 |
|
|
690 | (1) |
|
20.2.1.2 Self-Reinforced ZrC |
|
|
690 | (1) |
|
20.2.1.3 Aluminate Platelet-Reinforced Transformation-Toughened ZrO2 |
|
|
690 | (1) |
|
20.2.1.4 La beta-Alumina-Reinforced Transformation-Toughened ZrO2 |
|
|
690 | (3) |
|
20.2.2 Transformation-Toughened Ceramics |
|
|
693 | (5) |
|
20.2.2.1 Transformation-Toughened ZrO2 |
|
|
693 | (4) |
|
20.2.2.2 Other Transformation-Toughened Ceramics |
|
|
697 | (1) |
|
20.2.3 Particulate-Reinforced Ceramics |
|
|
698 | (1) |
|
20.2.4 Whisker-Reinforced Ceramics |
|
|
698 | (1) |
|
20.2.5 A1203 Reinforced with SiC Whiskers |
|
|
699 | (5) |
|
20.2.6 Si3N4 Reinforced with SiC and Si3N4 Whiskers |
|
|
704 | (1) |
|
20.2.7 MoSi2 and MoSi2-WSi2 Reinforced with SiC Whiskers |
|
|
704 | (1) |
|
20.2.8 Fiber-Reinforced Ceramics |
|
|
704 | (8) |
|
|
704 | (1) |
|
|
705 | (2) |
|
|
707 | (2) |
|
|
709 | (3) |
|
20.2.9 Examples of Ceramic Matrix Composites Reinforced with Ceramic Fibers |
|
|
712 | (27) |
|
20.2.9.1 Cement Matrix Composites |
|
|
712 | (1) |
|
20.2.9.2 Glass Matrix Composites |
|
|
712 | (2) |
|
20.2.9.3 Glass-Ceramic Matrix Composites |
|
|
714 | (2) |
|
20.2.9.4 SiC Matrix Composites Fabricated by Chemical Vapor Infiltration |
|
|
716 | (3) |
|
20.2.9.5 SiC Matrix Composites Fabricated by Si Melt Infiltration |
|
|
719 | (1) |
|
20.2.9.6 SiC Matrix Composites Fabricated by Preceramic Polymer Infiltration |
|
|
720 | (1) |
|
20.2.9.7 Oxide Matrix Composites Fabricated by Infiltration |
|
|
721 | (1) |
|
20.2.9.8 Si2N4 Matrix Composites |
|
|
721 | (3) |
|
20.2.9.9 Other Fiber-Reinforced Ceramic Matrix Composites |
|
|
724 | (2) |
|
20.2.10 Composites with Surface Compression |
|
|
726 | (1) |
|
|
727 | (1) |
|
|
728 | (1) |
|
|
729 | (5) |
|
|
734 | (1) |
|
|
734 | (5) |
Part V: Applying Ceramics to Real-World Challenges |
|
|
Chapter 21 Solving Past Challenges: Case Studies |
|
|
739 | (32) |
|
21.1 Evolution of the Integrated Circuit |
|
|
739 | (7) |
|
21.1.1 Silicon Crystal Growth |
|
|
741 | (1) |
|
21.1.2 Slicing, Grinding, and Polishing |
|
|
742 | (1) |
|
21.1.3 Doping to Achieve Semiconductor Behavior |
|
|
742 | (1) |
|
21.1.4 Buildup of the Device Layers |
|
|
743 | (3) |
|
21.2 Evolution of the Flash Memory and the Digital Camera |
|
|
746 | (1) |
|
21.3 Challenges of the Digital Watch |
|
|
747 | (1) |
|
21.4 Invention and Evolution of the Catalytic Converter |
|
|
747 | (3) |
|
21.4.1 Ceramic Material Selection and Development |
|
|
748 | (1) |
|
21.4.2 Design Selection and Fabrication Development |
|
|
748 | (1) |
|
21.4.3 Improvements in Catalytic Converters |
|
|
749 | (1) |
|
21.5 Bioglass and Bioceramics |
|
|
750 | (1) |
|
21.6 Refractory Evolution |
|
|
750 | (4) |
|
21.6.1 Refractories Development |
|
|
750 | (2) |
|
21.6.2 In Situ Refractories |
|
|
752 | (2) |
|
21.7 Ceramics in the Nuclear Industry |
|
|
754 | (9) |
|
21.7.1 Development of Nuclear Fuel |
|
|
755 | (5) |
|
21.7.2 Nuclear Wasteforms |
|
|
760 | (3) |
|
21.8 Silicon Nitride: Seeking Uses for a New Material |
|
|
763 | (5) |
|
|
768 | (3) |
|
Chapter 22 Where Next for Ceramics? Future Trends and Challenges |
|
|
771 | (16) |
|
22.1 Nanotechnology and Nanoprocessing |
|
|
771 | (5) |
|
22.1.1 Review of Importance of Particle Size and Arrangement |
|
|
771 | (2) |
|
22.1.2 Further Nanoscale Manipulation |
|
|
773 | (6) |
|
22.1.2.1 Control of Chemistry for Self-Assembly and Engineered Structures |
|
|
773 | (2) |
|
|
775 | (1) |
|
22.1.2.3 Nanoscale Thin Film Deposition |
|
|
776 | (1) |
|
22.1.2.4 Carbon Nanotubes |
|
|
776 | (1) |
|
22.2 Ceramics in Environmental Cleanup |
|
|
776 | (2) |
|
22.3 Raw Materials Challenges |
|
|
778 | (1) |
|
|
778 | (1) |
|
22.5 Advances in Processing |
|
|
779 | (3) |
|
22.5.1 Additive Layer Manufacture |
|
|
779 | (2) |
|
|
781 | (1) |
|
22.6 Extreme Environment Challenges |
|
|
782 | (2) |
|
22.6.1 Thermal and Environmental Barrier Coatings |
|
|
782 | (2) |
|
22.6.1.1 Using Coupled Modeling to Help Solve a Materials |
|
|
|
|
784 | (1) |
|
|
785 | (2) |
Appendix A: Glossary |
|
787 | (8) |
Appendix B: Effective Ionic Radii for Cations and Anions |
|
795 | (6) |
Appendix C: The Periodic Table of the Elements |
|
801 | (2) |
Index |
|
803 | |