Muutke küpsiste eelistusi

E-raamat: Modern Communications Jamming Principles and Techniques, Second Edition

  • Formaat: 870 pages
  • Ilmumisaeg: 31-Jan-2011
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608071661
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 870 pages
  • Ilmumisaeg: 31-Jan-2011
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608071661

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Finding ways to interfere with or jam communication signals is an essential area of electronic warfare (EW). In modern EW systems, anti-jam technology has been employed to overcome signal jamming. Recently, electronic warfare R&D has focused on creating methods to disrupt these anti-jam systems. This newly revised and greatly expanded edition of the popular Artech House book, "Modern Communications Jamming Principles and Techniques", provides an up-to-date, exhaustive treatment of the techniques and methods available to create countermeasures against anti-jam, over-the-air communications. The Second Edition features a wealth of new material on urban warfare, including a computer simulation of EW architecture alternatives for land-based forces based on urban constraints. This unique resource is dedicated to showing professionals how to design and build jammers specifically targeted at anti-jam communications. Moreover, practitioners find assistance in evaluating the expected performance of jamming systems against modern communications systems.
Preface to the Second Edition xix
Preface to the First Edition xxiii
Chapter 1 Modern Communications and Electronic Countermeasures 1(14)
1.1 Introduction
1(1)
1.2 Electronic Warfare
1(2)
1.3 Antijam Communications
3(1)
1.4 Networks
4(1)
1.5 Spread Spectrum Technology
5(3)
1.5.1 Low Probability of Detection
7(1)
1.5.2 Low Probability of Intercept
8(1)
1.5.3 Low Probability of Exploitation
8(1)
1.5.4 Antijam
8(1)
1.6 AJ Signal Types
8(2)
1.6.1 Direct-Sequence Spread Spectrum
8(1)
1.6.2 Frequency-Hopping Spread Spectrum
9(1)
1.6.3 Time-Hopping Spread Spectrum
10(1)
1.6.4 Hybrids
10(1)
1.7 Synchronization
10(1)
1.8 Communication System Model
11(1)
1.9 Urban Electronic Warfare
11(1)
1.10 Concluding Remarks
12(1)
References
13(2)
Chapter 2 Detection of Signals in Noise 15(106)
2.1 Introduction
15(1)
2.2 Signal Structure
16(1)
2.3 Receiver Structure
16(1)
2.4 Binary Decision Theory
17(13)
2.4.1 Statistical Signal Detection Theory
19(1)
2.4.2 Bayesian Approach
20(1)
2.4.3 Minimum Probability of Error Decision Rule
21(4)
2.4.4 Maximum A Posteriori Interpretation
25(1)
2.4.5 Neyman-Pearson Approach
26(4)
2.5 Receiving System Noise Power
30(8)
2.5.1 Channel Model
30(5)
2.5.2 Plasma Noise
35(3)
2.6 Noise Amplitude Probability Density Functions
38(9)
2.6.1 Gaussian
38(1)
2.6.2 Rayleigh
38(1)
2.6.3 Ricean
39(1)
2.6.4 Nakagami
39(3)
2.6.5 Log-Normal
42(3)
2.6.6 Illustrative Noise Amplitudes
45(1)
2.6.7 False Alarm Time
45(2)
2.6.8 Probability of Detection
47(1)
2.7 Radiometric Detection of Signals in Noise
47(23)
2.7.1 Introduction
47(3)
2.7.2 Radiometer Performance
50(6)
2.7.3 Effects of Fluctuating Noise Levels on Radiometric Detection
56(6)
2.7.4 Effects of Noise Power Level Uncertainty in Radiometric Detectors
62(3)
2.7.5 Energy Detection of a Signal with Random Amplitude
65(5)
2.8 Urban RF Noise
70(39)
2.8.1 Introduction
70(1)
2.8.2 Urban Noise Overview
70(3)
2.8.3 Vehicle Ignition Systems
73(3)
2.8.4 Fluorescent Lighting
76(3)
2.8.5 Microwave Oven Noise
79(1)
2.8.6 Electric Motor Noise
79(2)
2.8.7 Welder Noise
81(3)
2.8.8 Relay Noise
84(1)
2.8.9 Characteristics and Impact of Man-Made Noise
85(6)
2.8.10 Mathematical Representation of Impulsive Noise
91(6)
2.8.11 Man-Made Noise Power
97(5)
2.8.12 Alpha-Stable Processes
102(6)
2.8.13 Summary
108(1)
2.9 Effects of Impulsive Noise on Signal Detection
109(6)
2.9.1 Introduction
109(1)
2.9.2 Receiver Structures
110(4)
2.9.3 Performance
114(1)
2.9.4 Summary
115(1)
2.10 Concluding Remarks
115(1)
References
116(2)
Appendix 2A Chi-Square Distribution
118(3)
2A.1 Probability Density Function
118(1)
2A.2 Cumulative Distribution Function
118(3)
Chapter 3 Signaling for Modern Communications 121(120)
3.1 Introduction
121(1)
3.2 Signaling
121(3)
3.3 Binary Signal Reception
124(3)
3.4 Error Control
127(1)
3.5 Coding Techniques
128(9)
3.5.1 Block Coding
129(4)
3.5.2 Convolutional Coding
133(4)
3.6 Bit Interleaving
137(1)
3.7 Side Information
138(1)
3.7.1 Jammer State Information
138(1)
3.7.2 Channel State Information
139(1)
3.8 Signal-to-Noise Ratio
139(1)
3.9 Channel Bandwidth
140(1)
3.10 Phase Shift Keying
140(22)
3.10.1 Introduction
140(3)
3.10.2 BPSK
143(7)
3.10.3 QPSK
150(8)
3.10.4 DBPSK
158(4)
3.11 Frequency Shift Keying
162(14)
3.11.1 Modulations
162(2)
3.11.2 BFSK
164(9)
3.11.3 MFSK
173(3)
3.12 Quadrature Amplitude Modulation
176(12)
3.12.1 2QAM and 4QAM Modulation
178(1)
3.12.2 16QAM Performance with Gray Mapping
179(9)
3.13 Spread Spectrum
188(43)
3.13.1 Processing Gain
189(1)
3.13.2 Direct-Sequence Spread Spectrum
189(6)
3.13.3 Frequency-Hopping Spread Spectrum
195(7)
3.13.4 DSSS and FHSS Hybrid Spread Spectrum
202(3)
3.13.5 Chaotic Shift Keying
205(3)
3.13.6 Time-Hopping Spread Spectrum
208(23)
3.14 Orthogonal Frequency Division Multiplexing
231(5)
3.14.1 Single-Carrier Modulation System
231(1)
3.14.2 Frequency Division Multiplexing Modulation System
232(1)
3.14.3 Orthogonality and OFDM
232(1)
3.14.4 Implementation of OFDM Systems
233(1)
3.14.5 Multipath Channels and the Use of Cyclic Prefix
234(2)
3.15 Concluding Remarks
236(1)
References
237(4)
Chapter 4 Antijam Signal Detection 241(78)
4.1 Introduction
241(1)
4.2 Signal Detection
242(1)
4.3 Receivers
242(14)
4.3.1 Staring Receivers
243(1)
4.3.2 Scanning Receivers
243(4)
4.3.3 Detectors
247(2)
4.3.4 Filter Bank Combiner
249(7)
4.4 DSSS Signal Detection
256(22)
4.4.1 Signal Specific Detection
256(2)
4.4.2 Nonsignal Specific Detection
258(20)
4.5 Frequency-Hopping Spread Spectrum Signal Detection
278(12)
4.5.1 Introduction
278(3)
4.5.2 Searching for FHSS Targets
281(9)
4.6 FHSS Signal Sorting
290(9)
4.6.1 Sort Parameters
291(3)
4.6.2 Tracking Metrics
294(5)
4.7 Performance Simulation
299(17)
4.7.1 Simulation Description
299(6)
4.7.2 Statistics Collected
305(1)
4.7.3 Results
305(11)
4.8 Concluding Remarks
316(1)
References
316(3)
Chapter 5 Radio Signal Propagation 319(58)
5.1 Introduction
319(1)
5.2 Propagation of Signals in the VHF Range and Above
320(33)
5.2.1 Introduction
320(1)
5.2.2 Free-Space Propagation
320(1)
5.2.3 Propagation Close to the Earth
321(1)
5.2.4 Smooth Earth
322(10)
5.2.5 Effective Antenna Height
332(1)
5.2.6 Surface Roughness
333(3)
5.2.7 Diffraction Loss
336(2)
5.2.8 Terrain Irregularity
338(1)
5.2.9 Attenuation Due to Woodlands
338(3)
5.2.10 Multipath Reception
341(2)
5.2.11 Doppler Shift
343(3)
5.2.12 Oxygen Absorption at 60 GHz
346(1)
5.2.13 Propagation Models
347(6)
5.3 HF Signal Propagation
353(18)
5.3.1 Introduction
353(1)
5.3.2 Noise
353(1)
5.3.3 Ground Waves
354(11)
5.3.4 Sky Wave
365(6)
5.4 Concluding Remarks
371(3)
References
374(3)
Chapter 6 Feedback Shift Registers and Recursive Sequences 377(34)
6.1 Introduction
377(1)
6.2 Galois Fields
378(4)
6.2.1 Polynomials
380(2)
6.3 Shift Registers
382(10)
6.4 Maximal Sequences
392(1)
6.5 Correlation Functions
393(4)
6.6 Properties of in-Sequences
397(1)
6.7 Product Codes
398(1)
6.7.1 Gold Codes
398(1)
6.7.2 Kasami Codes
399(1)
6.8 LFRS Design
399(4)
6.8.1 Synthesis of m-Sequence LFSRs
400(1)
6.8.2 Other Ways to Generate m-Sequences
401(2)
6.9 Applications
403(2)
6.9.1 FHSS
403(1)
6.9.2 DSSS
404(1)
6.10 Nonlinear Feedback Shift Registers
405(3)
6.10.1 Nonlinear Combination Generators
406(1)
6.10.2 Nonlinear Filter Generators
406(1)
6.10.3 Variable Clock
407(1)
6.11 Concluding Remarks
408(1)
References
408(3)
Chapter 7 Synchronization and Tracking in Spread Spectrum Systems 411(56)
7.1 Introduction
411(1)
7.2 DSSS Synchronization
412(30)
7.2.1 DSSS Code Synchronization
413(9)
7.2.2 Chip Timing Synchronization
422(11)
7.2.3 Non-Gaussian Noise
433(5)
7.2.4 Code Synchronization for Band-Limited DSSS Systems
438(4)
7.3 DSSS Tracking
442(4)
7.4 FHSS Synchronization
446(11)
7.4.1 Matched Filter
449(2)
7.4.2 Serial Search
451(2)
7.4.3 Two-Step Synchronization
453(4)
7.4.4 Comparison of Mean Acquisition Times
457(1)
7.5 FHSS Tracking
457(7)
7.5.1 Early-Late Gate Tracking
458(6)
7.6 Concluding Remarks
464(1)
References
465(2)
Chapter 8 Jamming Techniques 467(46)
8.1 Introduction
467(1)
8.2 Jamming Strategies
468(34)
8.2.1 Partial Dwell Jamming of FHSS Systems
469(1)
8.2.2 Noise Jamming
470(8)
8.2.3 Tone Jamming
478(11)
8.2.4 Swept Jamming
489(1)
8.2.5 Pulse Jamming
490(1)
8.2.6 Follower Jamming
491(11)
8.2.7 Smart Jamming
502(1)
8.3 Asset Sharing
502(2)
8.3.1 Look-Through
503(1)
8.3.2 Power Sharing
504(1)
8.3.3 Time Sharing
504(1)
8.4 Jamming Power to Signal Power Ratios
504(4)
8.4.1 Rn Model JSR
505(1)
8.4.2 Two-Ray Propagation JSR
505(2)
8.4.3 Nicholson JSR
507(1)
8.4.4 Egli Model JSR
508(1)
8.5 Jammer Platform Configurations
508(1)
8.6 Concluding Remarks
509(1)
References
510(3)
Chapter 9 Blind CDMA Code Discovery 513(20)
9.1 Introduction
513(1)
9.2 CDMA Signals
513(2)
9.3 Single Code Discovery
515(4)
9.4 Blind Estimation of Multiple Codes with Subspace Decomposition and MUSIC
519(6)
9.4.1 Signal Model
519(1)
9.4.2 Subspace Decomposition
520(5)
9.4.3 Performance
525(1)
9.4.4 Summary
525(1)
9.5 Blind Estimation of Multiple Codes with Iterative Subspace Decomposition
525(4)
9.5.1 Iterative Subspace Method
525(4)
9.6 Blind Discovery of DSSS in-Sequence Chip Codes
529(2)
9.7 Concluding Remarks
531(1)
References
532(1)
Chapter 10 Electronic Warfare and Direct Sequence Spread Spectrum Systems 533(64)
10.1 Introduction
533(1)
10.2 DSSS Communication Systems
534(5)
10.2.1 Introduction
534(1)
10.2.2 DSSS Transmitter
534(1)
10.2.3 Receiver
535(3)
10.2.4 Spreading Codes
538(1)
10.3 Spectral Characteristics of DSSS
539(5)
10.3.1 Signal Formats
543(1)
10.4 BBN Jamming of DSSS Systems
544(8)
10.4.1 BPSK and QPSK
548(2)
10.4.2 BBN Jamming of Chaotic Systems
550(2)
10.5 PBN Jamming of DSSS Systems
552(3)
10.6 Pulse Jamming of DSSS Systems
555(8)
10.6.1 Pulsed Jamming of Uncoded DSSS Systems
555(3)
10.6.2 Pulse Jamming of Repeat Coded BPSK DSSS Systems
558(5)
10.7 Tone Jamming of DSSS Systems
563(30)
10.7.1 Introduction
563(1)
10.7.2 Jammer
563(2)
10.7.3 Received Signals
565(3)
10.7.4 Correlator Outputs
568(1)
10.7.5 Single-Tone Jamming
569(15)
10.7.6 Single-Tone Jamming of Chaotic Systems
584(1)
10.7.7 Multitone Jamming
585(6)
10.7.8 Comparison of Various Strategies
591(2)
10.7.9 Summary
593(1)
10.8 Concluding Remarks
593(1)
References
594(3)
Chapter 11 Electronic Warfare and Fast Frequency Hopping Systems 597(34)
11.1 Introduction
597(1)
11.2 Channel Structure
598(1)
11.3 Receiver Architecture
599(1)
11.4 Multiple Dwells Per Data Bit
600(2)
11.5 BBN Jamming of FFHSS Systems
602(2)
11.6 Follower Jamming of FFHSS Systems
604(13)
11.6.1 Follower/NBN Jamming
606(3)
11.6.2 Follower/Tone Jamming
609(4)
11.6.3 Summary for Follower Jamming
613(4)
11.7 PBN Jamming of FFHSS Systems
617(4)
11.7.1 Uncoded Signals
618(3)
11.7.2 Error Coded Signals
621(1)
11.7.3 Narrowband Noise Jamming
621(1)
11.8 Single-Tone Jamming of FFHSS Systems
621(2)
11.9 Multiple-Tone Jamming of FFHSS Systems
623(2)
11.9.1 Uncoded FFHSS MFSK Signals
624(1)
11.9.2 Error-Coded FFHSS MFSK Signals
625(1)
11.10 Pulsed Jamming of FFHSS Systems
625(1)
11.11 Concluding Remarks
625(3)
References
628(3)
Chapter 12 Electronic Warfare and Slow Frequency Hopping Systems 631(38)
12.1 Introduction
631(1)
12.2 BBN Jamming of SFHSS Systems
632(2)
12.2.1 Uncoiled
632(2)
12.2.2 Error Coded
634(1)
12.3 PBN Jamming of SFHSS Systems
634(16)
12.3.1 Uncoded SFHSS MFSK Systems
635(5)
12.3.2 Error-Coded SFHSS MFSK Systems
640(10)
12.4 Multitone Jamming of SFHSS Systems
650(8)
12.4.1 Uncoded SFHSS MFSK Systems
651(5)
12.4.2 Error-Coded SFHSS MFSK Signals
656(2)
12.5 Follower Jamming of SFHSS Systems
658(6)
12.5.1 Noise Jamming
660(1)
12.5.2 Tone Jamming
660(1)
12.5.3 Comparison
661(3)
12.6 Error Coded MFSK Jamming
664(1)
12.7 Concluding Remarks
664(2)
References
666(3)
Chapter 13 Electronic Warfare and Ultrawideband Systems 669(36)
13.1 Introduction
669(1)
13.2 Detecting UWB Signals
670(18)
13.2.1 Modulations
670(1)
13.2.2 Required SNR Measure of Effectiveness
671(12)
13.2.2 Ratio of Distances Measure of Effectiveness
683(5)
13.3 Jamming UWB Signals
688(14)
13.3.1 Jamming Effects on UWB Systems
689(1)
13.3.2 Processing Gain
689(1)
13.3.3 BBN Jamming
689(1)
13.3.4 Tone Jamming
690(1)
13.3.5 Multitone Jamming
690(8)
13.3.6 Pulsed Jamming
698(1)
13.3.7 Partial-Band Noise Jamming
698(3)
13.3.8 Narrowband Noise Jamming
701(1)
13.4 Concluding Remarks
702(1)
References
703(2)
Chapter 14 Electronic Warfare and Hybrid Spread Spectrum Systems 705(34)
14.1 Introduction
705(1)
14.2 Hybrid SS Systems
705(1)
14.3 Coherent Reception
706(14)
14.3.1 Coherent Asynchronous BPSK DSSS/SFHSS Systems
709(1)
14.3.2 Coherent Asynchronous QPSK DSSS/SFHSS Systems
710(1)
14.3.3 Coherent Synchronous BPSK DSSS/SFHSS Systems
710(1)
14.3.4 Coherent Synchronous QPSK DSSS/SFHSS Systems
710(1)
14.3.5 BBN Jamming of Coherent DSSS/SFHSS Systems
711(2)
14.3.6 PBN Jamming of Coherent DSSS/SFHSS Systems
713(3)
14.3.7 Multitone Jamming of Coherent DSSS/SFESS Systems
716(3)
14.3.8 NBN Follower Jamming of Coherent DSSS/SFHSS Systems
719(1)
14.3.9 Jamming Coherent DSSS/SFHSS Systems Comparisons
719(1)
14.4 Noncoherent Reception
720(16)
14.4.1 Noncoherent Asynchronous DSSS/SFHSS Systems
723(1)
14.4.2 Noncoherent Synchronous DSSS/SFHSS Systems
723(1)
14.4.3 BBN Jamming of Noncoherent DSSS/SFHSS Systems
724(3)
14.4.4 PBN Jamming of Noncoherent DSSS/SFHSS Systems
727(2)
14.4.5 Multitone Jamming of Noncoherent DSSS/SFHSS Systems
729(6)
14.4.6 Jamming DSSS/SFHSS Performance Comparisons
735(1)
14.5 Concluding Remarks
736(1)
References
737(2)
Chapter 15 Characteristics of Urban Terrain 739(16)
15.1 Introduction
739(1)
15.2 Military Operations in Urbanized Terrain
740(1)
15.3 Cities
740(7)
15.3.1 Multiple Avenues of Approach
741(1)
15.3.2 Categories of Built-Up Areas
742(1)
15.3.3 Characteristics of Urban Areas
743(4)
15.4 Characteristics of Urban Warfare
747(5)
15.4.1 Asymmetric Tactics
748(1)
15.4.2 Difficult Terrain
748(1)
15.4.3 Identification of Friend from Foe
748(1)
15.4.4 Underground Enemy
748(1)
15.4.5 Armor
749(1)
15.4.6 Fratricide
749(1)
15.4.7 Civilian Structures
750(1)
15.4.8 Artillery
750(1)
15.4.9 Electronic Warfare
750(1)
15.4.10 HUMINT
750(1)
15.4.11 Ambushes
750(1)
15.4.12 Situational Awareness
751(1)
15.5 Typical Tactics of Urban Guerillas
752(1)
15.6 Psychological Implications and Operations in Asymmetric Warfare
753(1)
15.7 Concluding Remarks
753(1)
References
753(2)
Chapter 16 Signal Propagation in Urban Settings 755(36)
16.1 Introduction
755(1)
16.2 General Characteristics of Urban Signal Propagation
755(1)
16.3 Urban Signal Propagation
756(11)
16.3.1 Introduction
756(1)
16.3.2 Properties of Urban Signal Propagation
757(10)
16.4 Path Loss Predictions for Large Systems
767(7)
16.4.1 Path Loss
767(2)
16.4.2 Vegetation Effects on Path Loss
769(1)
16.4.3 Antenna Height Gain
770(2)
16.4.4 Path Loss Predictions in the High-Rise Urban Core
772(2)
16.5 Path Loss Prediction for Microcellular Systems
774(2)
16.5.1 Line-of-Sight Propagation Along Streets
774(1)
16.5.2 Propagation over Buildings for Low Antennas
775(1)
16.6 MS to Base Propagation
776(1)
16.7 Propagation Models
776(11)
16.7.1 Introduction
776(1)
16.7.2 Hata-Okumura Propagation Model
777(4)
16.7.3 Modified Hata-Okumura Model
781(2)
16.7.4 Walfisch and Bertoni Model
783(3)
16.7.5 Path Loss in Street Microcells—Two-Slope Model
786(1)
16.8 Indoor Propagation
787(1)
16.9 Concluding Remarks
788(1)
References
789(2)
Chapter 17 Urban Electronic Warfare 791(22)
17.1 Introduction
791(1)
17.2 Electronic Warfare
791(2)
17.3 Electronic Isolation
793(2)
17.4 Networked Communications
795(1)
17.5 Improvised Explosive Devices Countermeasures
795(1)
17.6 Challenges of Urban EW
796(5)
17.6.1 Multipath
796(1)
17.6.2 Lack of Direct Wave Signal Component
796(1)
17.6.3 3D Battlespace
797(1)
17.6.4 Cover and Concealment
797(1)
17.6.5 Noncombatant Population
798(1)
17.6.6 Cochannel
798(1)
17.6.7 Elevated Antennas
798(1)
17.6.8 Nontraditional Emitters
798(1)
17.6.9 Encryption
799(1)
17.6.10 EW Fratricide
799(1)
17.6.11 Power and HVAC
799(1)
17.6.12 Satellite Navigation Denied Areas
800(1)
17.6.13 Urban Impulsive Noise
800(1)
17.6.14 Gathering Intelligence
800(1)
17.6.15 Friendly C2 Communications
800(1)
17.7 Urban Electronic Warfare Operational Simulation
801(9)
17.7.1 Introduction
801(1)
17.7.2 EW Methodology
801(1)
17.7.3 Modeling EW Limitations
802(1)
17.7.4 Key Assumptions
802(1)
17.7.5 Urban Scenario
803(1)
17.7.6 Role of Electronic Warfare in the Urban Scenario
804(1)
17.7.7 Cases Examined
804(2)
17.7.8 Base Case Results
806(3)
17.7.9 Conclusions
809(1)
17.8 Concluding Remarks
810(1)
References
811(2)
Chapter 18 Robust Blind Detection and Geolocation of CDMA Signals in an Urban Environment 813(30)
18.1 introduction
813(1)
18.2 CDMA Signals
814(2)
18.3 Parametric Data Model
816(5)
18.3.1 Sensor Array
816(3)
18.3.2 Spatial Covariance Matrix
819(2)
18.3.3 Sample Covariance Matrix
821(1)
18.4 Beamforming
821(12)
18.4.1 Conventional Delay and Multiply Beamformer
821(3)
18.4.2 Standard Capon Beamformer
824(3)
18.4.3 Robust Capon Beamformer
827(1)
18.4.4 General Linear Combination–Based Robust Capon Beamformer
828(3)
18.4.5 Eigendecomposition Method
831(2)
18.5 CDMA Detection and Geolocation
833(7)
18.5.1 Spatial Cochannel Interference
834(6)
18.6 Blind Identification of CDMA Signals
840(1)
18.7 Concluding Remarks
840(1)
References
840(3)
Appendix A Q-Function 843(6)
A.1 Q-Function
843(2)
A.2 Marcum's Q-Function
845(2)
A.2.1 Modified Bessel Function of the First Kind and Zeroth Order
845(2)
A.3 Generalized Q-Function
847(1)
References
848(1)
Appendix B Simulated Networks 849(8)
B.1 Introduction
849(8)
List of Acronyms 857(4)
About the Author 861(2)
Index 863
Richard A. Poisel is a senior engineering fellow at Raytheon Missile Systems, Tucson, Arizona. He was formerly the chief scientist at the U.S. Army Research, Development and Engineering Command, Intelligence and Information Warfare Directorate, Ft. Monmouth, New Jersey. Dr. Poisel is also the author of numerous books in the field, including Introduction to Communication Electronic Warfare Systems, Second Edition and Target Acquisition in Communication Electronic Warfare Systems, (Artech House, 2008 and 2004).