Muutke küpsiste eelistusi

E-raamat: Modern Cryptography and Elliptic Curves

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 68,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC).

Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bezout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie-Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC.

The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.

Arvustused

The main objective of this book, which is mainly aimed at undergraduate students, is to explain the arithmetic of elliptic curves defined over finite fields and to show how those curves can be used in cryptography. In order to do that, the author purposely avoids complex mathematical demonstrations and, instead, presents the concepts in a more descriptive way, suggesting some topics for further exploration by the reader." Victor Gayoso Martíinez, Mathematical Reviews

Preface vii
Introduction ix
Chapter 1 Three Motivating Problems
1(8)
§1.1 Fermat's Last Theorem
3(2)
§1.2 The Congruent Number Problem
5(1)
§1.3 Cryptography
6(3)
Chapter 2 Back to the Beginning
9(36)
§2.1 The Unit Circle: Real vs. Rational Points
10(2)
§2.2 Parametrizing the Rational Points on the Unit Circle
12(4)
§2.3 Finding all Pythagorean Triples
16(11)
§2.4 Looking for Underlying Structure: Geometry vs. Algebra
27(7)
§2.5 More about Points on Curves
34(4)
§2.6 Gathering Some Insight about Plane Curves
38(5)
§2.7 Additional Exercises
43(2)
Chapter 3 Some Elementary Number Theory
45(28)
§3.1 The Integers
46(1)
§3.2 Some Basic Properties of the Integers
47(5)
§3.3 Euclid's Algorithm
52(4)
§3.4 A First Pass at Modular Arithmetic
56(7)
§3.5 Elementary Cryptography: Caesar Cipher
63(3)
§3.6 Affine Ciphers and Linear Congruences
66(4)
§3.7 Systems of Congruences
70(3)
Chapter 4 A Second View of Modular Arithmetic: Zn and Un
73(28)
§4.1 Groups and Rings
73(4)
§4.2 Fractions and the Notion of an Equivalence Relation
77(2)
§4.3 Modular Arithmetic
79(14)
§4.4 A Few More Comments on the Euler Totient Function
93(2)
§4.5 An Application to Factoring
95(6)
Chapter 5 Public-Key Cryptography and RSA
101(26)
§5.1 A Brief Overview of Cryptographic Systems
102(5)
§5.2 RSA
107(7)
§5.3 Hash Functions
114(9)
§5.4 Breaking Cryptosystems and Practical RSA Security Considerations
123(4)
Chapter 6 A Little More Algebra
127(20)
§6.1 Towards a Classification of Groups
128(1)
§6.2 Cayley Tables
128(3)
§6.3 A Couple of Non-abelian Groups
131(3)
§6.4 Cyclic Groups and Direct Products
134(4)
§6.5 Fundamental Theorem of Finite Abelian Groups
138(3)
§6.6 Primitive Roots
141(2)
§6.7 Diffie--Hellman Key Exchange
143(1)
§6.8 ElGamal Encryption
144(3)
Chapter 7 Curves in Affine and Projective Space
147(42)
§7.1 Affine and Projective Space
147(6)
§7.2 Curves in the Affine and Projective Plane
153(3)
§7.3 Rational Points on Curves
156(3)
§7.4 The Group Law for Points on an Elliptic Curve
159(20)
§7.5 A Formula for the Group Law on an Elliptic Curve
179(6)
§7.6 The Number of Points on an Elliptic Curve
185(4)
Chapter 8 Applications of Elliptic Curves
189(14)
§8.1 Elliptic Curves and Factoring
190(6)
§8.2 Elliptic Curves and Cryptography
196(2)
§8.3 Remarks on a Post-Quantum Cryptographic World
198(5)
Appendix A Deeper Results and Concluding Thoughts
203(16)
§A.1 The Congruent Number Problem and Tunnell's Solution
203(6)
§A.2 A Digression on Functions of a Complex Variable
209(2)
§A.3 Return to the Birch and Swinnerton-Dyer Conjecture
211(1)
§A.4 Elliptic Curves over C
212(7)
Appendix B Answers to Selected Exercises
219(26)
§B.1
Chapter 2
219(12)
§B.2
Chapter 3
231(2)
§B.3
Chapter 4
233(3)
§B.4
Chapter 5
236(2)
§B.5
Chapter 6
238(3)
§B.6
Chapter 7
241(4)
Bibliography 245(4)
Index 249
Thomas R. Shemanske, Dartmouth College, Hanover, NH.