Muutke küpsiste eelistusi

E-raamat: Modern Differential Geometry of Curves and Surfaces with Mathematica

(University of Maryland, College Park, MD), (Politecnico of Torino, Torino, Italy), (University di Torino, Italy)
  • Formaat: 1016 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 06-Sep-2017
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781420010312
  • Formaat - PDF+DRM
  • Hind: 65,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 1016 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 06-Sep-2017
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781420010312

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Grays famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Grays death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions.

The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshis formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted.

Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Arvustused

This is a nicely readable textbook on differential geometry. It offers an outstanding, comprehensive presentation of both theoretical and computational aspects There are hundreds of illustrations that help the reader visualize the concepts. It is a nicely written book, strongly recommended to all with an interest in differential geometry, its computational aspects and related fields. In EMS Newsletter, June 2007

Curves in the Plane. Famous Plane Curves. Alternative Ways of Plotting
Curves. New Curves from Old. Determining a Plane Curve from its Curvature.
Global Properties of Plane Curves. Curves in Space. Construction of Space
Curves. Calculus on Euclidean Space. Surfaces in Euclidean Space.
Nonorientable Surfaces. Metrics on Surfaces. Shape and Curvature. Ruled
Surfaces. Surfaces of Revolution and Constant Curvature. A Selection of
Minimal Surfaces. Intrinsic Surface Geometry. Asymptotic Curves and Geodesics
on Surfaces. Principal Curves and Umbilic Points. Canal Surfaces and Cyclides
of Dupin. The Theory of Surfaces of Constant Negative Curvature. Minimal
Surfaces via Complex Variables. Rotation and Animation using Quaternions.
Differentiable Manifolds. Riemannian Manifolds. Abstract Surfaces and their
Geodesics. The GaussBonnet Theorem.
Abbena, Elsa; Salamon, Simon; Gray, Alfred