Muutke küpsiste eelistusi

E-raamat: Modern Optical Engineering 4E (PB)

  • Formaat: 764 pages
  • Ilmumisaeg: 25-Dec-2007
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071593755
  • Formaat - EPUB+DRM
  • Hind: 71,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 764 pages
  • Ilmumisaeg: 25-Dec-2007
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071593755

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Also appropriate for scientists and mathematicians, this advanced engineering textbook explains the image-forming characteristics of optical systems, typical optical system layout, the analysis of optical systems, and the lens design process. The fourth edition adds chapters on third-order aberration theory and calculation, and the design of mirror and catadioptric systems. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com) The Latest Advances in Optical Engineering and Lens Technology Long-established as the definitive optics text and reference, Modern Optical Engineering has been completely revised and updated to equip you with all the latest optical and lens advances. The Fourth Edition now contains cutting-edge information on optical engineering theory, design, and practice, including new chapters on ray tracing, optical system design, and third-order aberration theory. Written by the renowned optical scientist Warren J. Smith, this state-of-the-art guide provides unsurpassed coverage of image formation, basic optical devices, image evaluation, fabrication and testing methods, and more. Comprehensive and up-to-date, Modern Optical Engineering features:The latest information on optical engineering theory, design, and practiceOver 150 detailed illustrationsNew to this edition: new coverage of ray tracing, optical system design, and third-order aberration theory; new lens designs; new optical design software; and new problems and exercises Inside This Updated Optical Engineering Classic• Image formation • Aberrations • Prisms and mirrors • The eye • Stops and apertures • Optical materials • Interference coatings • Radiometry and photometry • Basic optical devices • Optical systems • Ray tracing • Third-order aberration theory • Image evaluation • Design of optical systems • 44 lens designs • Optics fabrication and testing
Preface xi
Optics Overview
1(20)
The Electromagnetic Spectrum
1(2)
Light Wave Propagation
3(2)
Snell's Law of Refraction
5(3)
The Action of Simple Lenses and Prisms on Wave Fronts
8(3)
Interference and Diffraction
11(5)
The Photoelectric Effect
16(5)
Bibliography
17(1)
Exercises
18(3)
Gaussian Optics: The Cardinal Points
21(14)
Introduction
21(1)
Cardinal Points of an Optical System
22(2)
Image Position and Size
24(6)
A Collection of Imagery Equations
30(1)
Optical Systems Not Immersed in Air
31(4)
Bibliography
32(1)
Exercises
32(3)
Paraxial Optics and Calculations
35(18)
Refraction of a Light Ray at a Single Surface
35(2)
The Paraxial Region
37(2)
Paraxial Raytracing through Several Surfaces
39(5)
Calculation of the Focal Points and Principal Points
44(3)
The ``Thin Lens''
47(2)
Mirrors
49(4)
Bibliography
51(1)
Exercises
51(2)
Optical System Considerations
53(18)
Systems of Separated Components
53(5)
The Optical Invariant
58(5)
Matrix Optics
63(1)
The y-ybar Diagram
64(1)
The Scheimpflug Condition
65(2)
Summary of Sign Conventions
67(4)
Bibliography
67(1)
Exercises
68(3)
The Primary Aberrations
71(34)
Introduction
71(1)
The Aberration Polynomial and the Seidei Aberrations
72(11)
Chromatic Aberrations
83(1)
The Effect of Lens Shape and Stop Position on the Aberrations
84(4)
Aberration Variation with Aperture and Field
88(2)
Optical Path Difference (Wave Front Aberration)
90(1)
Aberration Correction and Residuals
91(3)
Ray Intercept Curves and the ``Orders'' of Aberrations
94(5)
The Relationships between Longitudinal Aberration, Transverse Aberration, Wave-Front Aberration (OPD), and Angular Aberration
99(6)
Bibliography
102(1)
Exercises
102(3)
Third-Order Aberration Theory and Calculation
105(18)
Introduction
105(2)
Paraxial Raystracing
107(1)
Third-Order Aberrations: Surface Contributions
108(5)
Third-Order Aberrations: Thin Lenses; Stop Shift Equations
113(4)
Sample Calculations
117(6)
Bibliography
122(1)
Prism and Mirror Systems
123(34)
Introduction
123(1)
Dispersing Prisms
123(2)
The ``Thin'' Prism
125(1)
Minimum Deviation
126(1)
The Achromatic Prism and the Direct Vision Prism
126(2)
Total Internal Reflection
128(1)
Reflection from a Plane Surface
129(3)
Plane Parallel Plates
132(4)
The Right-Angle Prism
136(3)
The Roof Prism
139(2)
Erecting Prism Systems
141(3)
Inversion Prisms
144(1)
The Penta Prism
145(1)
Rhomboids and Beamsplitters
146(3)
Plane Mirrors
149(1)
The Design of Prism and Reflector Systems
149(5)
Analysis of Fabrication Errors
154(3)
Bibliography
155(2)
Characteristics of the Human Eye
157(18)
Introduction
157(1)
The Structure of the Eye
158(2)
Characteristics of the Eye
160(8)
Defects of the Eye
168(7)
Bibliography
170(1)
Experiments
171(1)
Exercises
172(3)
Stops, Apertures, Pupils and Diffraction
175(30)
Introduction
175(1)
The Aperture Stop and Pupils
176(1)
The Field Stop
177(1)
Vignetting
177(2)
Glare Stops, Cold Stops, and Baffles
179(3)
The Telecentric Stop
182(1)
Apertures and Image Illumination---f-Number and Cosine-Fourth
183(3)
Depth of Focus
186(2)
Diffraction Effects of Apertures
188(4)
Resolution of Optical Systems
192(3)
Diffraction of a Gaussian (Laser) Beam
195(4)
The Fourier Transform Lens and Spatial Filtering
199(6)
Bibliography
200(1)
Exercises
201(4)
Optical Materials
205(32)
Reflection, Absorption, Dispersion
205(5)
Optical Glass
210(6)
Special Glasses
216(3)
Crystalline Materials
219(2)
Plastic Optical Materials
221(3)
Absorption Filters
224(3)
Diffusing Materials and Projection Screens
227(3)
Polarizing Materials
230(2)
Cements and Liquids
232(5)
Bibliography
233(1)
Exercises
234(3)
Optical Coatings
237(16)
Dielectric Reflection and Interference Fitters
237(10)
Reflectors
247(3)
Reticles
250(3)
Bibliography
251(1)
Exercises
252(1)
Principles of Radiometry and Photometry
253(34)
Introduction
253(1)
The Inverse Square Law; Intensity
254(1)
Radiance and Lambert's Law
255(1)
Radiation into a Hemisphere
256(1)
Irradlance Produced by a Diffuse Source
257(2)
The Radiometry of Images
259(4)
Spectral Radiometry
263(1)
Blackbody Radiation
264(6)
Photometry
270(7)
Illumination Devices
277(10)
Bibliography
282(1)
Exercises
283(4)
Optical System Layout
287(52)
Telescopes, Afocal Systems
287(4)
Field Lenses and Relay Systems
291(2)
Exit Pupils, the Eye, and Resolution
293(10)
The Simple Microscope or Magnifier
303(2)
The Compound Microscope
305(2)
Rangefinders
307(4)
Radiometer and Detector Optics
311(7)
Fiber Optics
318(5)
Anamorphic Systems
323(5)
Variable-Power (Zoom) Systems
328(5)
The Diffractive Surface
333(6)
Bibliography
334(1)
Exercises
334(5)
Case Studies in System Layout
339(26)
Introduction
339(1)
Telephoto Lens
340(1)
Retrofocus Lens
341(1)
Relay System
342(1)
Aperture Stop for Relay System of Sec. 14.4
343(1)
Short Range Telescope
344(3)
Field Lens for Sec. 14.6
347(1)
Raytrace of Sec. 14.7
348(1)
Power Microscope
349(1)
Brueke 125 x Magnifier
350(1)
A 4 x Mechanically Compensated Zoom Lens
351(5)
Doing System Layout by Computer
356(1)
An Athermalized Mid-IR System with an External Cold Stop
357(8)
Wave-Front Aberrations and MTF
365(44)
Introduction
365(1)
Optical Path Difference: Focus Shift
366(1)
Optical Path Difference: Spherical Aberration
367(6)
Aberration Tolerances
373(6)
Image Energy Distribution (Geometric)
379(1)
Spread Functions---Point and Line
380(1)
Geometric Spot Size Due to Spherical Aberration
381(4)
The Modulation Transfer Function
385(6)
Square-Wave vs. Sine-Wave Targets
391(1)
Special Modulation Transfer Functions: Diffraction-Limited Systems
392(9)
Radial Energy Distribution
401(1)
Point Spread Functions for the Primary Aberrations
402(7)
Bibliography
407(1)
Exercises
408(1)
The Basics of Lens Design
409(48)
Introduction
409(2)
The Simple Meniscus Camera Lens
411(6)
The Symmetrical Principle
417(1)
Achromatic Telescope Objectives (Thin-Lens Theory)
417(4)
Achromatic Telescope Objectives (Design Forms)
421(9)
The Diffractive Surface in Lens Design
430(5)
The Cooke Triplet Anastigmat: Third-Order Theory
435(11)
Automatic Design by Electronic Computer
446(5)
Practical Considerations
451(6)
Bibliography
453(1)
Exercises
454(3)
Lens Design for Eyepieces, Microscopes, Cameras, etc.
457(46)
Telescope Systems and Eyepieces
457(9)
Microscope Objectives
466(7)
Photographic Objectives
473(21)
Condenser Systems
494(4)
Aberration Characteristics of Simple Lenses
498(5)
Bibliography
501(1)
Exercises
501(2)
Design of Mirror and Catadioptric Systems
503(26)
Reflecting Systems
503(1)
The Spherical Mirror
503(3)
The Paraboloid Reflector
506(1)
The Ellipsoid and Hyperboloid
507(1)
Equations for Two-Mirror Systems
508(5)
Conic Section through the Origin
513(2)
The Schmidt System
515(2)
The Mangin Mirror
517(2)
The Bouwers (Maksutov) System
519(3)
The Rapid Estimation of Blur Sizes for Simple Optical Systems
522(7)
Bibliography
526(1)
Exercises
527(2)
Selected Lens Designs, Analyzed and Annotated
529(70)
Introduction
529(1)
Lens Data Tables
529(1)
Raytrace Figures
530(1)
A Note Re the Modulation Transfer Function
531(1)
Index to the Lenses
532(2)
The Lenses
534(65)
Bibliography
597(2)
The Practice of Optical Engineering
599(60)
Optical Manufacture
599(11)
Optical Specifications and Tolerances
610(18)
Optical Mounting Techniques
628(5)
Optical Laboratory Practice
633(19)
Tolerance Budget Example
652(7)
Bibliography
656(3)
Getting the Most Out of ``Stock'' Lenses
659(28)
Introduction
659(1)
Stock Lenses
659(2)
Some Simple Measurements
661(4)
System Mock-up and Test
665(3)
Aberration Considerations
668(3)
How to Use a Singlet (Single Element)
671(4)
How to Use a Cemented Doublet
675(1)
Combinations of Stock Lenses
676(8)
Sources
684(3)
Appendix A. Raytracing and Aberration Calculation 687(20)
Appendix B. Some Standard Dimensions 707(2)
Glossary 709(24)
Index 733


Warren J. Smith, chief scientist at Kaiser Electro-Optics and an independent consultant, is one of the most widely known writers and educators in the field of optical design. He is the author of Modern Optical Engineering, Modern Lens Design, and Practical Optical System Layout.