Muutke küpsiste eelistusi

E-raamat: Modern Robotics: Mechanics, Planning, and Control

(Northwestern University, Illinois), (Seoul National University)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-May-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108515658
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 25-May-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108515658
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is the go-to textbook for learning about the mechanics, planning, and control of robots in a unified way. Modern Robotics emphasises both the latest geometric techniques and algorithmic aspects of these three subjects, with accompanying software, video lectures, and numerous exercises.

This introduction to robotics offers a distinct and unified perspective of the mechanics, planning and control of robots. Ideal for self-learning, or for courses, as it assumes only freshman-level physics, ordinary differential equations, linear algebra and a little bit of computing background. Modern Robotics presents the state-of-the-art, screw-theoretic techniques capturing the most salient physical features of a robot in an intuitive geometrical way. With numerous exercises at the end of each chapter, accompanying software written to reinforce the concepts in the book and video lectures aimed at changing the classroom experience, this is the go-to textbook for learning about this fascinating subject.

Muu info

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Foreword xi
Roger Brockett
Foreword xiii
Matthew Mason
Preface xv
1 Preview
1(9)
2 Configuration Space
10(40)
2.1 Degrees of Freedom of a Rigid Body
11(3)
2.2 Degrees of Freedom of a Robot
14(6)
2.3 Configuration Space: Topology and Representation
20(5)
2.4 Configuration and Velocity Constraints
25(3)
2.5 Task Space and Workspace
28(4)
2.6 Summary
32(1)
2.7 Notes and References
33(1)
2.8 Exercises
33(17)
3 Rigid-Body Motions
50(66)
3.1 Rigid-Body Motions in the Plane
53(5)
3.2 Rotations and Angular Velocities
58(17)
3.3 Rigid-Body Motions and Twists
75(17)
3.4 Wrenches
92(2)
3.5 Summary
94(2)
3.6 Software
96(1)
3.7 Notes and References
97(1)
3.8 Exercises
98(18)
4 Forward Kinematics
116(30)
4.1 Product of Exponentials Formula
119(10)
4.2 The Universal Robot Description Format
129(5)
4.3 Summary
134(1)
4.4 Software
135(1)
4.5 Notes and References
136(1)
4.6 Exercises
136(10)
5 Velocity Kinematics and Statics
146(41)
5.1 Manipulator Jacobian
152(10)
5.2 Statics of Open Chains
162(1)
5.3 Singularity Analysis
163(5)
5.4 Manipulability
168(3)
5.5 Summary
171(1)
5.6 Software
172(1)
5.7 Notes and References
172(1)
5.8 Exercises
173(14)
6 Inverse Kinematics
187(22)
6.1 Analytic Inverse Kinematics
189(4)
6.2 Numerical Inverse Kinematics
193(6)
6.3 Inverse Velocity Kinematics
199(1)
6.4 A Note on Closed Loops
200(1)
6.5 Summary
201(1)
6.6 Software
201(1)
6.7 Notes and References
202(1)
6.8 Exercises
202(7)
7 Kinematics of Closed Chains
209(22)
7.1 Inverse and Forward Kinematics
210(5)
7.2 Differential Kinematics
215(4)
7.3 Singularities
219(4)
7.4 Summary
223(1)
7.5 Notes and References
224(1)
7.6 Exercises
225(6)
8 Dynamics of Open Chains
231(47)
8.1 Lagrangian Formulation
232(9)
8.2 Dynamics of a Single Rigid Body
241(7)
8.3 Newton--Euler Inverse Dynamics
248(4)
8.4 Dynamic Equations in Closed Form
252(3)
8.5 Forward Dynamics of Open Chains
255(1)
8.6 Dynamics in the Task Space
256(1)
8.7 Constrained Dynamics
257(2)
8.8 Robot Dynamics in the URDF
259(1)
8.9 Actuation, Gearing, and Friction
259(10)
8.10 Summary
269(4)
8.11 Software
273(1)
8.12 Notes and References
274(1)
8.13 Exercises
275(3)
9 Trajectory Generation
278(24)
9.1 Definitions
278(1)
9.2 Point-to-Point Trajectories
279(6)
9.3 Polynomial Via Point Trajectories
285(2)
9.4 Time-Optimal Time Scaling
287(8)
9.5 Summary
295(1)
9.6 Software
296(1)
9.7 Notes and References
297(1)
9.8 Exercises
298(4)
10 Motion Planning
302(43)
10.1 Overview of Motion Planning
302(4)
10.2 Foundations
306(9)
10.3 Complete Path Planners
315(1)
10.4 Grid Methods
316(7)
10.5 Sampling Methods
323(6)
10.6 Virtual Potential Fields
329(7)
10.7 Nonlinear Optimization
336(1)
10.8 Smoothing
337(1)
10.9 Summary
338(2)
10.10 Notes and References
340(1)
10.11 Exercises
341(4)
11 Robot Control
345(51)
11.1 Control System Overview
346(1)
11.2 Error Dynamics
346(8)
11.3 Motion Control with Velocity Inputs
354(6)
11.4 Motion Control with Torque or Force Inputs
360(12)
11.5 Force Control
372(2)
11.6 Hybrid Motion--Force Control
374(4)
11.7 Impedance Control
378(3)
11.8 Low-Level Joint Force--Torque Control
381(2)
11.9 Other Topics
383(2)
11.10 Summary
385(2)
11.11 Software
387(1)
11.12 Notes and References
388(1)
11.13 Exercises
389(7)
12 Grasping and Manipulation
396(45)
12.1 Contact Kinematics
397(18)
12.2 Contact Forces and Friction
415(10)
12.3 Manipulation
425(6)
12.4 Summary
431(1)
12.5 Notes and References
432(1)
12.6 Exercises
433(8)
13 Wheeled Mobile Robots
441(74)
13.1 Types of Wheeled Mobile Robots
441(2)
13.2 Omnidirectional Wheeled Mobile Robots
443(5)
13.3 Nonholonomic Wheeled Mobile Robots
448(21)
13.4 Odometry
469(2)
13.5 Mobile Manipulation
471(3)
13.6 Summary
474(2)
13.7 Notes and References
476(1)
13.8 Exercises
477(9)
A Summary of Useful Formulas
486(7)
B Other Representations of Rotations
493(9)
C Denavit--Hartenberg Parameters
502(10)
D Optimization and Lagrange Multipliers
512(3)
Bibliography 515(9)
Index 524
Kevin M. Lynch received his B.S.E. in Electrical Engineering from Princeton, New Jersey in 1989, and Ph.D. in Robotics from Carnegie Mellon University, Pennsylvania in 1996. He has been a faculty member at Northwestern University, Illinois since 1997 and has held visiting positions at California Institute of Technology, Carnegie Mellon University, Tsukuba University, Japan and Northeastern University in Shenyang, China. His research focuses on dynamics, motion planning and control for robot manipulation and locomotion; self-organizing multi-agent systems; and physically interacting human-robot systems. A Fellow of the Institute of Electrical and Electronics Engineers (IEEE), he also was the recipient of the IEEE Early Career Award in Robotics and Automation, Northwestern's Professorship of Teaching Excellence, and the Northwestern Teacher of the Year award in engineering. Currently he is Senior Editor of the IEEE Robotics and Automation Letters, and the incoming Editor-in-Chief of the IEEE International Conference on Robotics and Automation. This is his third book. Frank C. Park received his B.S. in Electrical Engineering from Massachusetts Institute of Technology in 1985, and his Ph.D. in Applied Mathematics from Harvard University, Massachusetts in 1991. He has been on the faculty at University of California, Irvine and since 1995 he has been Professor of Mechanical and Aerospace Engineering at Seoul National University. His research interests are in robot mechanics, planning and control, vision and image processing, and related areas of applied mathematics. He has been an Institute of Electrical and Electronics Engineers (IEEE) Robotics and Automation Society Distinguished Lecturer and has held adjunct faculty positions at the Courant Institute of Mathematical Sciences, New York, the Interactive Computing Department at Georgia Institute of Technology and the Hong Kong University of Science and Technology Robotics Institute. He is a Fellow of the IEEE, Editor-in-Chief of the IEEE Transactions on Robotics, and developer of the EDX course Robot Mechanics and Control I, II.