Muutke küpsiste eelistusi

E-raamat: Modern Statistical Methods for HCI

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Thisbook critically reflects on current statistical methods used in Human-ComputerInteraction (HCI) and introduces a number of novel methods to the reader.Coveringmany techniques and approaches for exploratory data analysis including effectand power calculations, experimental design, event history analysis,non-parametric testing and Bayesian inference; the research contained in thisbook discusses how to communicate statistical results fairly, as well aspresenting a general set of recommendations for authors and reviewers toimprove the quality of statistical analysis in HCI. Each chapter presents [ R]code for running analyses on HCI examples and explains how the results can beinterpreted.ModernStatistical Methods for HCI is aimed at researchers and graduate students who have someknowledge of "traditional" null hypothesis significance testing, but who wishto improve their practice by using techniques which have recently emerged fromstatistics and related fields. This

book critically evaluates current practiceswithin the field and supports a less rigid, procedural view of statistics infavour of fair statistical communication.

Preface.- An Introduction to Modern Statistical Methods for HCI.- PartI: Getting Started With Data Analysis.- Getting started with [ R]: A Brief Introduction.-Descriptive Statistics, Graphs, and Visualization.- Handling Missing Data.-Part II: Classical Null Hypothesis Significance Testing Done Properly.- Effectsizes and Power in HCI.- Using R for Repeated and Time-Series Observations.- Non-ParametricStatistics in Human-Computer Interaction.- Part III : Bayesian Inference.- BayesianInference.- Bayesian Testing of Constrained Hypothesis.- Part IV: Advanced Modelingin HCI.- Latent Variable Models.- Using Generalized Linear (Mixed) Models inHCI.- Mixture Models: Latent Profile and Latent Class Analysis.- Part V:Improving Statistical Practice in HCI.- Fair Statistical Communication in HCI.-Improving Statistical Practice in HCI.

Arvustused

The book is structured in five parts and 14 chapters/papers within. Each chapter presents R language codes, and explains the results obtained. Each chapter presents multiple references and numerical illustrations for practical guide to writing codes in R. The book can serve to students and practitioners in various fields where applied statistics is used so understanding hypotheses testing is needed for analysis and meaningful decision making. (Stan Lipovetsky, Technometrics, Vol. 59 (2), April, 2017)

1 An Introduction to Modern Statistical Methods in HCI
1(18)
Judy Robertson
Maurits Kaptein
Part I Getting Started With Data Analysis
2 Getting Started with [ R]; a Brief Introduction
19(18)
Lianne Ippel
3 Descriptive Statistics, Graphs, and Visualisation
37(20)
Joanna Young
Jan Wessnitzer
4 Handling Missing Data
57(30)
Thom Baguley
Mark Andrews
Part II Classical Null Hypothesis Significance Testing Done Properly
5 Effect Sizes and Power Analysis in HCI
87(24)
Koji Yatani
6 Using R for Repeated and Time-Series Observations
111(24)
Deborah Fry
Kerri Wazny
Niall Anderson
7 Nonparametric Statistics in Human-Computer Interaction
135(38)
Jacob O. Wobbrock
Matthew Kay
Part III Bayesian Inference
8 Bayesian Inference
173(26)
Michail Tsikerdekis
9 Bayesian Testing of Constrained Hypotheses
199(34)
Joris Mulder
Part IV Advanced Modeling in HCI
10 Latent Variable Models
233(18)
A. Alexander Beaujean
Grant B. Morgan
11 Using Generalized Linear (Mixed) Models in HCI
251(24)
Maurits Kaptein
12 Mixture Models: Latent Profile and Latent Class Analysis
275(16)
Daniel Oberski
Part V Improving Statistical Practice in HCI
13 Fair Statistical Communication in HCI
291(40)
Pierre Dragicevic
14 Improving Statistical Practice in HCI
331
Judy Robertson
Maurits Kaptein