Muutke küpsiste eelistusi

E-raamat: Modern Statistics with R: From Wrangling and Exploring Data to Inference and Predictive Modelling

  • Formaat: 492 pages
  • Ilmumisaeg: 20-Aug-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040097601
  • Formaat - PDF+DRM
  • Hind: 83,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 492 pages
  • Ilmumisaeg: 20-Aug-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040097601

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit.



The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you:

  • Data wrangling – importing, formatting, reshaping, merging, and filtering data in R.
  • Exploratory data analysis – using visualisations and multivariate techniques to explore datasets.
  • Statistical inference – modern methods for testing hypotheses and computing confidence intervals.
  • Predictive modelling – regression models and machine learning methods for prediction, classification, and forecasting.
  • Simulation – using simulation techniques for sample size computations and evaluations of statistical methods.
  • Ethics in statistics – ethical issues and good statistical practice.
  • R programming – writing code that is fast, readable, and (hopefully!) free from bugs.

No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book.

In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

1. Introduction
2. The basics
3. The cornerstones of statistics
4. Exploratory data analysis and unsupervised learning
5. Dealing with messy data
6. R programming
7. The role of simulation in modern statistics
8. Regression models
9. Survival analysis and censored data
10. Structural equation models, factor analysis, and mediation
11. Predictive modelling and machine learning
12. Advanced topics
13. Debugging
14. Mathematical appendix Bibliography Index

Måns Thulin is a consultant, researcher, and teacher in Statistics. He started teaching Statistics with R at Uppsala University in 2007, while still an undergraduate student. Since then, he has used Statistics and R to tackle problems in diverse fields, ranging from how to identify nuclear fuel and how to improve milking robots, to wine tastings and designing music videos. His awardwinning research in Statistical Methodology is concerned with modern approaches to classical statistical methods.