Muutke küpsiste eelistusi

E-raamat: Modern Vibrations Primer

(Oklahoma State University, Stillwater, Oklahoma, USA)
  • Formaat: 440 pages
  • Ilmumisaeg: 01-Nov-2024
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040282526
  • Formaat - EPUB+DRM
  • Hind: 253,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 440 pages
  • Ilmumisaeg: 01-Nov-2024
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040282526

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A textbook for an introductory undergraduate or comprehensive graduate engineering course. Moretti (mechanical and aerospace engineering, Oklahoma State U.-Stillwater) begins each chapter with the fundamentals, and progresses to more advanced aspects within the same chapter, so students and instructors can use as much of each chapter as is appropriate and still cover all the topics. He reviews material from basic engineering courses where and when the text requires it. In addition to the fundamental methods of analysis, he also treats the practical applications in industry, restoring some of the practical subjects included in the earliest vibrations books that have been dropped from more theoretical texts. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Modern Vibrations Primer provides practicing mechanical engineers with guidance through the computer-based problem solving process. The book illustrates methods for reducing complex engineering problems to manageable, analytical models. It is the first vibrations guide written with a contemporary approach for integration with computers.

Ideal for self-study, each chapter contains a helpful exposition that emphasizes practical application and builds in complexity as it progresses. Chapters address discrete topics, creating an outstanding reference tool. The lecture-like format is easy to read. The primer first promotes a fundamental understanding, then advances further to problem solving, design prediction and trouble shooting. Outdated and theoretical material isn't covered, leaving room for modern applications such as autonomous oscillations, flow-induced vibrations, and parametric excitation

Until recently, some procedures , like arbitrarily-damped, multi-dimensional problems, were impractical. New methods have made them solvable, using PC-based matrix calculation and algebraic manipulation. Modern Vibrations Primer shows how to utilize these current resources by putting problems into standard mathematical forms, which can be worked out by any of a number of widely employed software programs. This book is necessary for any professional seeking to adapt their vibrations knowledge to a modern environment.

Arvustused

"The author illustrates methods for reducing complex engineering problems to manageable analytical models." --Mechanical Engineering

I Simple Systems 1(93)
Introduction and resources
3(6)
Background
3(1)
Objectives
4(1)
Method
4(1)
References
5(1)
Computers
5(1)
Report Writing
5(1)
Problems
6(3)
Formulation of Translational Systems and review of units
9(14)
Newton's Law
10(1)
Lumped-Parameter System
11(1)
Caution
12(1)
The Simple Pendulum
13(1)
Generalization
14(1)
Review of Units
14(2)
Model Example
16(7)
Formulation of Rotational Systems and review of second moments
23(8)
Newton's Law Revisited
23(1)
Torsional Systems
24(1)
Rigid Bodies
25(2)
Center of Gravity
27(1)
Parallel-Axis Theorem
27(1)
The Compound Pendulum
28(1)
Summary
29(2)
Undamped Free Vibration and static deflection
31(12)
Governing Equations
31(1)
Standard Form
32(1)
Fractional Analysis
33(1)
Exponential Solution
33(2)
Sinusoidal Solution
35(1)
Initial Conditions
36(1)
Static Deflection
37(1)
Stability
38(1)
Summary
38(5)
Energy Methods for Natural Frequency with an introduction to Hamiltonian methods
43(12)
Conservative Systems
44(1)
Complex Systems
44(2)
Short-cut Method Using Equivalent Elements
46(1)
Caution
47(1)
A Pathological Case
48(1)
Lagrange's Equation
49(1)
Summary
50(5)
Approximations for Distributed Systems and hydrodynamic inertia
55(14)
Rayleigh's Method
55(3)
Two-Lump System
56(1)
Bending Beams
57(1)
Short-Cut Method Using Maximum Energy
58(1)
Comparison of Different Guesses
59(1)
Static Deflection
59(1)
Equivalent Mass of Springs
60(1)
Lamb's Hydrodynamic Inertia
61(2)
Southwell's Method
63(3)
Summary
66(1)
Review
66(3)
Periodic Force Excitation of Undamped Systems and review of numerical Fourier analysis
69(14)
Governing Equations
69(1)
Complete Solution
70(2)
Amplification Factor
72(2)
Resonance
74(1)
Beats
75(2)
Base Excitation
77(1)
Fourier Analysis
77(2)
Numerical Fourier Analysis
79(2)
Summary
81(2)
Unbalance Excitation and rotating shafts
83(10)
Governing Equation
83(2)
Rate of Growth
85(1)
Unbalance
85(1)
Crank-Slider Harmonics
85(2)
Engine Balancing
87(2)
Primary Balance
87(1)
Secondary Balance
88(1)
Torsional Balance
89(1)
Rotating Shafts and Whirling
89(4)
The ``Flat'' Shaft
89(1)
The ``Circular'' Shaft
90(3)
II Damped Systems 93(96)
Damped Free Vibration and logarithmic decrement
95(10)
Standard Form
95(1)
Generalization
96(1)
Fractional Analysis
97(1)
Solution
97(3)
Initial Conditions
100(1)
Logarithmic Decrement
101(1)
Summary
102(3)
Formulation of Damping Terms and hereditary damping
105(6)
Effective Damping
105(1)
Power Loss
106(2)
Linearization
108(1)
Hereditary Damping
109(1)
Summary
109(2)
Periodic Excitation of Damped Systems and forces at the base
111(12)
Governing Equations
111(1)
Method of Solution
112(2)
Interpretation of Response Curves
114(1)
Sharpness of Resonance
115(1)
Power
116(1)
Force Transmissibility
117(2)
Isolation of Force from the Base
119(4)
Base Excitation and dynamic instrumentation
123(8)
Governing Equations
123(1)
Solution
124(1)
Vibration Isolation
124(1)
Dynamic Instrumentation
125(6)
Seismographs
127(1)
Accelerometers
127(1)
Laser Vibrometers
128(3)
Unbalance Excitation of Damped Systems and forces at the base
131(6)
Governing Equation
131(2)
Forces at the Base
133(1)
Isolation of Mass Excitation
134(1)
Overview of Periodic Excitation
134(2)
Application
136(1)
Transients by convolution
137(12)
Impulse Response
137(2)
Step Response
139(2)
Ramp Response
141(2)
Convolution Integration
143(1)
Base Excitation
144(5)
Shock Spectra and similitude
149(10)
Three Examples
149(5)
The Impulse Doublet
149(2)
The Square Pulse
151(1)
The Ramped Step
152(2)
Similitude
154(3)
Background
154(1)
Response Spectra
155(1)
Generalization
156(1)
Closure
157(2)
Transients by simulation
159(8)
Scale Models
159(1)
Analogs
160(1)
Numerical Simulation
160(4)
Central-Difference Method
161(1)
Stability
162(1)
Accuracy
163(1)
Initial Conditions
163(1)
Other Finite-Difference Methods
163(1)
Analog Computers
164(3)
Transients by integral transforms
167(10)
Laplace Transforms
167(6)
Procedure
169(2)
Overview of Transfer Functions
171(1)
s-Plane Analysis
171(2)
Zeta Transform
173(2)
Comparison
175(2)
Random Vibrations and statistical concepts
177(12)
Random Variables
177(6)
Probability
178(2)
Autocorrelation
180(1)
Fourier Transform
181(1)
Power Spectral Density (PSD)
182(1)
Ergodicity
183(1)
A/D Conversion
183(3)
Shannon Theorem
183(1)
Nyquist Aliasing
183(1)
Sampling Characteristics
184(1)
Total Sample Size
184(1)
Windowing
185(1)
Ensemble Averaging
185(1)
Transfer Functions
186(1)
Vibration Spectra
187(2)
III Multi-Degree-of-Freedom Systems 189(100)
Two-Directional Motion and principal coordinates
191(14)
Newton's Law
191(2)
Equilibrium Solution
193(2)
Definition of Influence Coefficients
195(1)
Transformation to Simple Systems
196(5)
Eigenvalues
196(1)
Eigenvectors
197(1)
Modes as Coordinate Systems
198(1)
Modal Matrix
199(1)
Coordinate Transformation
200(1)
Initial Conditions
201(1)
A Special Case
202(1)
Summary
202(3)
Multi-Mass Systems from Newton's law
205(18)
Problem Formulation
205(1)
Formulation from Influence Coefficients
206(1)
Transformation to Simple Systems
207(5)
Natural Frequencies
207(2)
Eigenvectors
209(1)
Initial Conditions
210(1)
Modes as Coordinates
211(1)
Weird Coordinates
212(1)
Simple Procedure for Unsymmetrical Cases
213(3)
Elegant Procedure
216(1)
Multi-Mass Problems
217(1)
Semi-Definite Problems
218(1)
Summary
219(4)
Combined Translation and Rotation and mass coupling
223(10)
Mass Coupling
223(1)
Spring Coupling
224(2)
Preferred Raw Coordinates
226(1)
Principal Coordinates
226(1)
Physical Decoupling
227(1)
Review
228(2)
Nodes
230(1)
Summary
231(2)
Lagrangian Methods and equivalent coupling
233(8)
Lagrange's Equation
233(1)
Flywheel Governor
234(1)
Equivalent Masses and Springs
235(1)
Double Pendulum
236(1)
Equivalent Mass of Springs
237(1)
Hydrodynamic Inertia Coupling
238(3)
Flexibility Formulation and estimation methods
241(12)
Flexibility Coefficients
241(1)
Beam Deflections
242(5)
Flexibility-Matrix Methods
247(1)
Dunkerley's Equation
247(1)
Rayleigh's Method
248(2)
Matrix Iteration
250(1)
Lumped-Mass Models
251(2)
Forced Excitation and modal analysis
253(10)
Periodic Excitation
253(2)
Simple Transformation
255(2)
Elegant Transformation
257(2)
The Harmonic Vibration Absorber
259(4)
Damped Multi-Degree-of-Freedom Systems and state-variable formulations
263(8)
Problem Statement
263(1)
Rayleigh Damping
264(2)
Damped Modes
266(1)
Hamilton's Canonical Form
267(2)
Closure
269(2)
Whirling and damping
271(8)
Whirling
272(2)
Undamped Case
272(1)
Bearing Damping
273(1)
Hysteresis Damping
274(1)
Dynamic Unbalance
274(1)
Stodola's Gyroscopic Effects
275(4)
Transfer Matrices and finite elements
279(10)
Transfer Matrices
279(6)
Torsional and Translational Systems
279(4)
Beam Elements
283(2)
Finite Elements
285(3)
Static Analysis
285(1)
Dynamic Analysis
286(1)
Beams
287(1)
Global Coordinates
287(1)
Closure
288(1)
IV Continuous Systems 289(60)
Tensioned Strings and threadlines
291(14)
The Wave Equation
291(1)
d'Alembert's Solution
292(1)
Separation of Variables
293(4)
Equivalence of Solutions
297(1)
Distributed Damping
298(1)
Support Damping
299(1)
Numerical Solution
299(3)
Finite-Difference Procedure
300(1)
Stability
301(1)
Numerical Diffusion
301(1)
Threadlines
302(3)
Pressure and Shear Waves and special end conditions
305(8)
Pressure Waves
305(2)
Shear and Torsional Waves
307(1)
Other Terminations
308(5)
Elastic Clamp
308(1)
Tip Mass
309(1)
Damped End
310(3)
Continuous Media and acoustic measurements
313(8)
Drumheads
313(2)
Acoustic Waves
315(6)
Sound Pressure
316(1)
Intensity
317(1)
Standing Waves
317(4)
Beam Vibration and approximate methods
321(16)
Modal Solution
322(7)
Separation of Variables
322(2)
End Conditions
324(1)
Modes of Uniform Beams
325(3)
Excitation
328(1)
Traveling Waves in Beams
329(1)
Wave Velocity
329(1)
Beams on Multiple Supports
330(2)
Bounded Estimates
330(1)
Ideal Distribution of Supports
331(1)
Effect of U-Bends
331(1)
Effect of Surrounding Fluid
331(1)
Rayleigh-Ritz
332(2)
Thin Plates
334(3)
Column Vibration and rails and pipes
337(8)
Tensioned Beams
337(1)
Compressed Columns
338(1)
Rails on Elastic Foundations
339(1)
Traveling Waves
340(1)
Stokes' Group Velocity
341(2)
Pipes
343(2)
Modal Analyzers and cross-spectra
345(4)
Cross-Spectra
345(1)
Cross-Correlation
345(1)
Multi-Channel FFT
346(1)
Excitation
346(1)
Measurement
347(1)
Data Acquisition
347(1)
Modal Evaluation
347(2)
V Parametric Excitation 349(8)
Time-Varying Coefficients and Mathieu's equation
351(6)
Mathieu's Equation
351(1)
Canonical Form
352(1)
Fractional Analysis
353(1)
Stability
354(1)
Strings
354(1)
Beams
355(1)
Closure
355(2)
VI Non-Linear Vibration 357(62)
Linearization and error analysis
359(6)
Linearization
359(1)
Linearization Process
360(1)
Example
361(2)
Case I
361(1)
Case II
362(1)
Case III
362(1)
Case IV
363(1)
Damping
363(1)
Closure
363(2)
The Phase Plane and graphical solutions
365(12)
The Phase Plane
365(1)
Phase-Plane-Delta Method
366(11)
Analytical Solution and elliptic integrals
377(6)
Integration in the Phase Plane
377(1)
Linear Example
378(1)
Non-Linear Springs
379(1)
Pendulum
380(3)
Pseudo-Linearization and equivalent damping
383(8)
Krylov-Bogoliubov's First Approximation
383(2)
Non-Linear Springs
385(2)
Non-Linear Damping
387(1)
Self-Sustaining Oscillations
388(1)
Forced KBM
389(2)
Series Expansions and subharmonics
391(4)
Perturbation Method
391(1)
Duffing's Equation
392(1)
Subharmonics
392(2)
Stability
394(1)
Numerical Simulation and chaos
395(4)
Euler's Method
395(4)
Vibration Control active and semi-active
399(6)
Suspension Performance Criteria
399(2)
Isolation
400(1)
Amplitude Limits
400(1)
Traction
400(1)
Power
401(1)
Weight and Cost
401(1)
Passive System
401(1)
Adaptive System
401(1)
Semi-Active Control
402(1)
Active Control
403(2)
Flow-Induced Vibrations and flow instabilities
405(8)
Turbulent Excitation
405(1)
Vortex Shedding
406(3)
Flutter
409(1)
Jet Switching
410(1)
Closure
411(2)
Literature Searches
413(6)
Initial Search
413(1)
Systematic Search
414(1)
Obtaining Papers
415(1)
Backward Expansion
415(1)
Forward Expansion
416(1)
Documentation
416(1)
Staying Current
417(2)
Index 419
Peter M. Moretti