Muutke küpsiste eelistusi

E-raamat: Modulation and Coding Techniques in Wireless Communications

Edited by (St. Petersburg State University of Aerospace Instrumentation, Russia), Edited by (Nokia Mobile Phones, Finland)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 19-Jan-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470976715
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 134,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 19-Jan-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470976715
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems

Arvustused

This is a timely book on wireless communications, with twelve chapters covering theoretical results and material of Standards The effort dedicated by the authors to bridge technology with standards for sure will be very well appreciated by the readers.  (IEEE Communications Magazine, 1 June 2012)

About the Editors xi
List of Contributors
xiii
Acknowledgements xv
Introduction xvii
1 Channel Models and Reliable Communication
1(20)
Evgenii Krouk
Andrei Ovchinnikov
Jussi Poikonen
1.1 Principles of Reliable Communication
1(1)
1.2 AWGN
2(4)
1.2.1 Baseband Representation of AWGN
2(3)
1.2.2 From Sample SNR to Eb/N0
5(1)
1.3 Fading Processes in Wireless Communication Channels
6(8)
1.3.1 Large-Scale Fading (Path Loss)
7(3)
1.3.2 Medium-Scale Fading (Shadowing)
10(1)
1.3.3 Small-Scale Fading (Multipath Propagation)
11(3)
1.4 Modelling Frequency-Nonselective Fading
14(4)
1.4.1 Rayleigh and Rice Distributions
14(1)
1.4.2 Maximum Doppler Frequency Shift
15(1)
1.4.3 Wide-Sense Stationary Stochastic Processes
15(1)
1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading
15(2)
1.4.5 SNR in Rayleigh Fading Channels
17(1)
1.5 WSSUS Models for Frequency-Selective Fading
18(1)
1.5.1 Basic Principles
18(1)
1.5.2 Definitions
19(1)
References
19(2)
2 Modulation
21(62)
Sergei Semenov
2.1 Basic Principles of Bandpass Modulation
21(17)
2.1.1 The Complex Representation of a Bandpass Signal
22(5)
2.1.2 Representation of Signal with Basis Functions
27(4)
2.1.3 Pulse Shaping
31(4)
2.1.4 Matched Filter
35(3)
2.2 PSK
38(16)
2.2.1 BPSK
38(5)
2.2.2 QPSK
43(4)
2.2.3 M-PSK
47(1)
2.2.4 DPSK
48(2)
2.2.5 OQPSK
50(1)
2.2.6 π/4-QPSK
51(3)
2.3 MSK
54(6)
2.3.1 GMSK
54(6)
2.4 QAM
60(6)
2.5 OFDM
66(15)
References
81(2)
3 Block Codes
83(78)
Grigorii Kabatiansky
Evgenii Krouk
Andrei Ovchinnikov
Sergei Semenov
3.1 Main Definitions
83(3)
3.2 Algebraic Structures
86(8)
3.3 Linear Block Codes
94(4)
3.4 Cyclic Codes
98(16)
3.5 Bounds on Minimum Distance
114(5)
3.6 Minimum Distance Decoding
119(1)
3.7 Information Set Decoding
120(8)
3.8 Hamming Codes
128(3)
3.9 Reed-Solomon Codes
131(2)
3.10 BCH Codes
133(2)
3.11 Decoding of BCH Codes
135(4)
3.12 Sudan Algorithm and Its Extensions
139(7)
3.13 LDPC Codes
146(11)
3.13.1 LDPC Constructions
148(6)
3.13.2 Decoding of LDPC Codes
154(3)
References
157(4)
4 Convolutional Codes and Turbo-Codes
161(45)
Sergei Semenov
Andrey Trofimov
4.1 Convolutional Codes Representation and Encoding
161(8)
4.2 Viterbi Decoding Algorithm
169(9)
4.2.1 Hard Decision Viterbi Algorithm
170(4)
4.2.2 Soft Decision Viterbi Algorithm
174(4)
4.3 List Decoding
178(1)
4.4 Upper Bound on Bit Error Probability for Viterbi Decoding
178(5)
4.5 Sequential Decoding
183(7)
4.5.1 Stack Algorithm
184(3)
4.5.2 Fano Algorithm
187(3)
4.6 Parallel-Concatenated Convolutional Codes and Soft Input Soft Output Decoding
190(5)
4.7 SISO Decoding Algorithms
195(10)
4.7.1 MAP Algorithm and Its Variants
195(6)
4.7.2 Soft-In/Soft-Out Viterbi Algorithm (SOVA)
201(4)
References
205(1)
4.A Modified Chernoff Bound and Some Applications
206(15)
Andrey Trofimov
References
219(2)
5 Equalization
221(42)
Sergei Semenov
5.1 Equalization with Filtering
222(17)
5.1.1 Zero-Forcing Equalization
226(2)
5.1.2 MMSE Equalization
228(5)
5.1.3 DFE
233(6)
5.2 Equalization Based on Sequence Estimation
239(12)
5.2.1 MLSE Equalization
239(3)
5.2.2 Sphere Detection
242(9)
5.3 RAKE Receiver
251(3)
5.4 Turbo Equalization
254(5)
5.5 Performance Comparison
259(2)
References
261(2)
6 ARQ
263(14)
Evgenii Krouk
6.1 Basic ARQ Schemes
263(6)
6.1.1 Basic Concepts
263(2)
6.1.2 Stop-and-Wait ARQ
265(2)
6.1.3 ARQ with N Steps Back (Go Back N, GBN)
267(1)
6.1.4 ARQ with Selective Repeat (SR)
268(1)
6.2 Hybrid ARQ
269(6)
6.2.1 Type-I Hybrid ARQ (Chase Combining)
269(1)
6.2.2 Type-II Hybrid ARQ (Full IR)
270(3)
6.2.3 Type-III Hybrid ARQ (Partial IR)
273(2)
References
275(2)
7 Coded Modulation
277(24)
Andrey Trofimov
7.1 Principle of Coded Modulation
277(5)
7.1.1 Illustrative Example
280(2)
7.2 Modulation Mapping by Signal Set Partitioning
282(3)
7.3 Ungerboeck Codes
285(2)
7.4 Performance Estimation of TCM System
287(12)
7.4.1 Squared Distance Structure of PSK and QAM Constellations
287(2)
7.4.2 Upper Bound on Error Event Probability and Bit Error Probability for TCM
289(10)
References
299(2)
8 MIMO
301(50)
Andrei Ovchinnikov
Sergei Semenov
8.1 MIMO Channel Model
301(9)
8.1.1 Fading in Narrowband Channels
301(2)
8.1.2 Fading Countermeasures: Diversity
303(3)
8.1.3 MIMO Channel model
306(4)
8.2 Space-Time Coding
310(7)
8.2.1 Maximum Ratio Combining
310(1)
5.2.2 Definition of Space-Time Codes
311(1)
8.2.3 Space-Time Codes with Two Transmit Antennas
312(2)
8.2.4 Construction Criteria for Space-Time Codes
314(3)
8.3 Orthogonal Designs
317(10)
8.3.1 Real Orthogonal Designs
317(2)
8.3.2 Complex Orthogonal Designs
319(4)
8.3.3 Decoding of Space-Time Codes
323(3)
8.3.4 Error Probability for Orthogonal Space-Time Codes
326(1)
8.4 Space-Time Trellis Codes
327(7)
8.4.1 Space-Time Trellis Codes
327(3)
8.4.2 Space-Time Turbo Trellis Codes
330(4)
8.5 Differential Space-Time Codes
334(3)
8.6 Spatial Multiplexing
337(7)
8.6.1 General Concepts
337(2)
8.6.2 V-BLAST
339(2)
8.6.3 D-BLAST
341(1)
8.6.4 Turbo-BLAST
342(2)
8.7 Beamforming
344(4)
References
348(3)
9 Multiple Access Methods
351(30)
Dmitry Osipov
Jarkko Paavola
Jussi Poikonen
9.1 Frequency Division Multiple Access
353(6)
9.1.1 Spectral Reuse
355(1)
9.1.2 OFDMA
356(2)
9.1.3 SC-FDMA
358(1)
9.1.4 WDMA
359(1)
9.2 Time Division Multiple Access
359(1)
9.3 Code Division Multiple Access
360(7)
9.3.1 Direct-Sequence CDMA
360(6)
9.3.2 Frequency-Hopping CDMA
366(1)
9.4 Advanced MA Methods
367(4)
9.4.1 Multicarrier CDMA
367(1)
9.4.2 Random OFDMA
368(1)
9.4.3 DHA-FH-CDMA
369(2)
9.5 Random Access Multiple Access Methods
371(5)
9.6 Conclusions
376(1)
References
376(5)
10 Standardization in IEEE 802.11,802.16
381(48)
Tuomas Laine
Zexian Li
Andrei Malkov
Prabodh Varshney
10.1 IEEE Overview
381(3)
10.2 Standard Development Process
384(1)
10.3 IEEE 802.11 Working Group
385(1)
10.4 IEEE 802.16 Working Group
386(2)
10.5 IEEE 802.11
388(10)
10.5.1 Overview and Scope
388(1)
10.5.2 Frequency Plan
388(1)
10.5.3 Reference Model
389(1)
10.5.4 Architecture
390(1)
10.5.5 802.11a
391(1)
10.5.6 802.11b
392(2)
10.5.7 802.11g
394(1)
10.5.8 802.11n
395(2)
10.5.9 Future Developments
397(1)
10.6 IEEE 802.16x
398(30)
10.6.1 Key PHY Features of the IEEE 802.16e
398(2)
10.6.2 IEEE 802.16m
400(28)
References
428(1)
11 Standardization in 3GPP
429(176)
Asbjørn Grøvlen
Kari Hooli
Matti Jokimies
Kari Pajukoski
Sergei Semenov
Esa Tiirola
11.1 Standardization Process and Organization
429(4)
11.1.1 General
429(1)
11.1.2 Organization of 3GPP
430(1)
11.1.3 Organization of TSG RAN
430(1)
11.1.4 Standardization Process
431(1)
11.1.5 3GPP Releases
432(1)
11.1.6 Frequency Bands and 3GPP Releases
433(1)
11.1.7 RAN Specifications
433(1)
11.2 3G WCDMA
433(57)
11.2.1 WCDMA Concept, Logical, Transport and Physical Channels
434(1)
11.2.2 Logical and Transport Channels
435(5)
11.2.3 Physical Channels
440(19)
11.2.4 Coding, Spreading and Modulation
459(17)
11.2.5 Cell Search
476(1)
11.2.6 Power Control Procedures
476(3)
11.2.7 Handover Procedures
479(7)
11.2.8 Transmit Diversity
486(4)
11.3 3.5G HSDPA/HSUPA
490(87)
11.3.1 HSDPA
490(46)
11.3.2 HSUPA
536(38)
11.3.3 CPC
574(3)
11.4 4G LTE
577(25)
11.4.1 LTE Downlink
577(15)
11.4.2 LTE Uplink
592(10)
References
602(3)
12 CDMA2000 and Its Evolution
605(50)
Andrei Ovchinnikov
12.1 Development of 3G CDMA2000 Standard
605(6)
12.1.1 IS-95 Family of Standards (cdmaOne)
605(1)
12.1.2 IS-2000 Family of Standards
606(5)
12.2 Reverse Channel of Physical Layer in CDMA2000 Standard
611(12)
12.2.1 Reverse Channel Structure
611(1)
12.2.2 Forward Error Correction (FEC)
612(3)
12.2.3 Codeword Symbols Repetition
615(3)
12.2.4 Puncturing
618(1)
12.2.5 Block Interleaving
618(1)
12.2.6 Orthogonal Modulation and Orthogonal Spreading
619(1)
12.2.7 Direct Sequence Spreading and Quadrature Spreading
619(3)
12.2.8 Frame Quality Indicator
622(1)
12.3 Forward Channel of Physical Layer in CDMA2000 Standard
623(8)
12.3.1 Forward Channel Structure
623(2)
12.3.2 Forward Error Correction
625(4)
12.3.3 Codeword Symbols Repetition
629(1)
12.3.4 Puncturing
630(1)
12.3.5 Block Interleaving
630(1)
12.3.6 Sequence Repetition
630(1)
12.3.7 Data Scrambling
630(1)
12.3.8 Orthogonal and Quasi-Orthogonal Spreading
631(1)
12.3.9 Quadrature Spreading
631(1)
12.3.10 Frame Quality Indicator
631(1)
12.4 Architecture Model of CDMA2000 lxEV-DO Standard
631(2)
12.4.1 Structure of Physical Layer Packet
632(1)
12.4.2 FCS Computation
632(1)
12.5 Access Terminal of the CDMA 2000 lxEV-DO Standard
633(10)
12.5.1 Power Control
633(1)
12.5.2 Reverse Channel Structure
633(1)
12.5.3 Modulation Parameters and Transmission Rates
634(1)
12.5.4 Access Channel
634(2)
12.5.5 Reverse Traffic Channel
636(4)
12.5.6 Encoding
640(1)
12.5.7 Channel Interleaving and Repetition
641(1)
12.5.8 Quadrature Spreading
641(2)
12.6 Access Network of the CDMA2000 lxEV-DO Standard
643(11)
12.6.1 Forward Channel Structure
643(2)
12.6.2 Modulation Parameters and Transmission Rates
645(1)
12.6.3 Pilot Channel
645(1)
12.6.4 Forward MAC Channel
645(2)
12.6.5 Control Channel
647(1)
12.6.6 Forward Traffic Channel
647(4)
12.6.7 Time-Division Multiplexing
651(1)
12.6.8 Quadrature Spreading
651(3)
References
654(1)
Index 655
Professor E. Krouk has worked in the field of communication theory and techniques for more than 30 years. His areas of interests are coding theory, the mathematical theory of communications and cryptography. He is now the Dean of the Information Systems and Data Protection Faculty of the Saint-Petersburg State University of Aerospace Instrumentation. He is author of 3 books, more than 100 scientific articles and 30 international and Russian patents. Sergei Semenov received his Ph.D. degree from St.-Petersburg State University for Airspace Instrumentation (SUAI), Russia in 1993. Dr. Semenov joined Nokia Corporation in 1999 and is currently a Specialist in Modem Algorithm Design/Wireless Modem. His research interests include coding and communication theory and their application to communication systems.