Muutke küpsiste eelistusi

E-raamat: Moduli of Smoothness

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book introduces a new way of measuring smoothness. The need for this new concept arises from the failure of the classical moduli of smoothness to solve some basic problems, such as characterizing the behaviour of best polynomial approximation in Lp -1,1 . The new modulus, which has a simple form, can also be described as a Peetre K functional between an Lp space and a weighted Sobolev space. Connections between interpolation of spaces and approximation theory are utilized in applying the modulus of smoothness. The applications include best (weighted) polynomial approximation on a finite interval, characterization of the rate of approximation given by classical operator processes such as Bernstein, Kantorovich, Szasz-Mirakjan, and Post-Widder operators, Freud-type weighted polynomial approximation on infinite intervals with exponentially decreasing weights and polynomial approximation in several variables. Special emphasis is placed on the computability aspect of the moduli. The results are new, and complete proofs are given. It is hoped that the book will be of interest and useful for mathematicians working in approximation theory, interpolation of spaces, numerical analysis and real analysis.