Muutke küpsiste eelistusi

E-raamat: Molecular Relaxation in Liquids

(Professor, Indian Institute of Science)
  • Formaat: 304 pages
  • Ilmumisaeg: 30-Jan-2012
  • Kirjastus: Oxford University Press Inc
  • Keel: eng
  • ISBN-13: 9780199863334
  • Formaat - PDF+DRM
  • Hind: 119,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 304 pages
  • Ilmumisaeg: 30-Jan-2012
  • Kirjastus: Oxford University Press Inc
  • Keel: eng
  • ISBN-13: 9780199863334

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs) time scales. This was a remarkable advance because many of the fundamental chemical processes occur precisely in this range and was inaccessible before the 1980s. Since then, an enormous wealth of information has been generated by many groups around the world, who have discovered many interesting phenomena that has fueled further growth in this field.

As emphasized throughout the book, the seemingly different phenomena studied in this area are often closely related at a fundamental level. Biman Bagchi explains why relatively small although fairly sophisticated theoretical tools have been successful in explaining a wealth of experimental data at a semi-phenomenological level.

Arvustused

"The past 30 years has seen great progress in the microscopic understanding of dynamical processes in liquids and solutions. Ultrafast spectroscopy, modern statistical mechanics, and numerical computer simulation have been developed with highly productive synergies and feedbacks. Biman Bagchi has been at the center of the interplay of theory, simulation, and experiment during this whole period, making it highly appropriate that he has written a book aimed at placing the theoretical techniques and results in the context of the key experimental results." -- Graham R. Fleming, Vice Chancellor for Research, University of California, Berkeley

Preface xiii
Acknowledgments xv
Foreword xvii
1 Basic Concepts
3(9)
1.1 Introduction
3(1)
1.2 Response Functions and Fluctuations
4(2)
1.3 Time-Correlation Functions
6(1)
1.4 Linear Response Theory
6(2)
1.5 Fluctuation-Dissipation Theorem
8(1)
1.6 Diffusion, Friction, and Viscosity
8(2)
1.7 Summary
10(2)
2 Phenomenological Description of Relaxation in Liquids
12(7)
2.1 Introduction
12(1)
2.2 Langevin Equation
13(1)
2.3 Fokker-Planck Equation
14(1)
2.4 Smoluchowski Equation
15(1)
2.5 Master Equations
16(1)
2.6 The Special Case of Harmonic Potential
16(1)
2.7 Summary
17(2)
3 Density and Momentum Relaxation in Liquids
19(13)
3.1 Introduction
19(1)
3.2 Hydrodynamics at Large Length Scales
20(4)
3.2.1 Rayleigh-Brillouin Spectrum
22(2)
3.3 Hydrodynamic Relations between Self-Diffusion Coefficient and Viscosity
24(1)
3.4 Slow Dynamics at Large Wave Numbers: de Gennes Narrowing
25(2)
3.5 Extended Hydrodynamics: Dynamics at Intermediate Length Scales
27(2)
3.6 Mode-Coupling Theory
29(1)
3.7 Summary
30(2)
4 Relationship between Theory and Experiment
32(19)
4.1 Introduction
32(2)
4.2 Dynamic Light Scattering: Probe of Density Fluctuation at Long Length Scales
34(2)
4.3 Magnetic Resonance Experiments: Probe of Single-Particle Dynamics
36(2)
4.4 Kerr Relaxation
38(1)
4.5 Dielectric Relaxation
38(1)
4.6 Fluorescence Depolarization
39(1)
4.7 Solvation Dynamics (Time-Dependent Fluorescence Stokes Shift)
40(1)
4.8 Neutron Scattering: Coherent and Incoherent
41(2)
4.9 Raman Line-Shape Measurements
43(2)
4.10 Coherent Anti-Stokes Raman Scattering (CARS)
45(1)
4.11 Echo Techniques
45(2)
4.12 Ultrafast Chemical Reactions
47(1)
4.13 Fluorescence Quenching
47(1)
4.14 Two-Dimensional Infrared (2D-IR) Spectroscopy
48(1)
4.15 Single-Molecule Spectroscopy
49(1)
4.16 Summary
49(2)
5 Orientational and Dielectric Relaxation
51(27)
5.1 Introduction
51(4)
5.2 Equilibrium and Time-Dependent Orientational Correlation Functions
55(2)
5.3 Relationship with Experimental Observables
57(1)
5.4 Molecular Hydrodynamic Description of Orientational Motion
57(2)
5.4.1 The Equations of Motion
58(1)
5.4.2 Limiting Situations
59(1)
5.5 Markovian Theory of Collective Orientational Relaxation: Berne Treatment
59(9)
5.5.1 Generalized Smoluchowski Equation Description
60(2)
5.5.2 Solution by Spherical Harmonic Expansion
62(2)
5.5.3 Relaxation of Longitudinal and Transverse Components
64(1)
5.5.4 Molecular Theory of Dielectric Relaxation
64(1)
5.5.5 Hidden Role of Translational Motion in Orientational Relaxation
65(1)
5.5.6 Orientational de Gennes Narrowing at Intermediate Wave Numbers
66(1)
5.5.7 Reduction to the Continuum Limit
67(1)
5.6 Memory Effects in Orientational Relaxation
68(2)
5.7 Relationship between Macroscopic and Microscopic Orientational Relaxations
70(2)
5.8 The Special Case of Orientational Relaxation of Water
72(2)
5.9 Lattice Models of Orientational Relaxation
74(1)
5.10 Nonassociated Liquids
75(1)
5.11 Summary
76(2)
6 Solvation Dynamics in Dipolar Liquid
78(39)
6.1 Introduction
78(1)
6.2 Physical Concepts and Measurement
79(7)
6.2.1 Measuring Ultrafast, Sub-100 fs Decay
83(3)
6.3 Phenomenological Theories: Continuum-Model Descriptions
86(7)
6.3.1 Homogeneous Dielectric Models
86(3)
6.3.2 Inhomogeneous Dielectric Models
89(2)
6.3.3 Dynamic Exchange Model
91(2)
6.4 Experimental Results: A Chronological Overview
93(4)
6.4.1 Discovery of Multiexponential Solvation Dynamics: Phase-I (1980-1990)
93(1)
6.4.2 Discovery of Subpicosecond Ultrafast Solvation Dynamics: Phase-II (1990-2000)
94(1)
6.4.3 Solvation Dynamics in Complex Systems: Phase-III (2000-)
95(2)
6.5 Microscopic Theories
97(3)
6.5.1 Molecular Hydrodynamics Description
97(1)
6.5.2 Polarization and Dielectric Relaxation of Pure Liquid
98(1)
6.5.2.1 Effects of Translational Diffusion in Solvation Dynamics
98(2)
6.6 Simple Idealized Models
100(2)
6.6.1 Overdamped Solvation: Brownian Dipolar Lattice
101(1)
6.6.2 Underdamped Solvation: Stockmayer Liquid
102(1)
6.7 Solvation Dynamics in Water, Acetonitrile, and Methanol Revisited
102(4)
6.7.1 The Sub-100 fs Ultrafast Component: Microscopic Origin
104(2)
6.8 Effects of Solvation on Chemical Processes in the Solution Phase
106(5)
6.8.1 Limiting Ionic Conductivity of Electrolyte Solutions: Control of a Slow Phenomenon by Ultrafast Dynamics
107(1)
6.8.2 Effects of Ultrafast Solvation in Electron-Transfer Reactions
107(1)
6.8.3 Nonequilibrium Solvation Effects in Chemical Reactions
107(2)
6.8.3.1 Strong Solvent Forces
109(1)
6.8.3.2 Weak Solvent Forces
110(1)
6.9 Solvation Dynamics in Several Related Systems
111(2)
6.9.1 Solvation in Aqueous Electrolyte Solutions
111(1)
6.9.2 Dynamics of Electron Solvation
111(1)
6.9.3 Solvation Dynamics in Supercritical Fluids
112(1)
6.9.4 Nonpolar Solvation Dynamics
112(1)
6.10 Computer Simulation Studies: Simple and Complex Systems
113(2)
6.10.1 Aqueous Micelles
114(1)
6.10.2 Water Pool in Reverse Micelles
114(1)
6.10.3 Protein Hydration Layer
114(1)
6.10.4 DNA Groove Hydration Layer
115(1)
6.11 Summary
115(2)
7 Activated Barrier-Crossing Dynamics in Liquids
117(38)
7.1 Introduction
117(2)
7.2 Microscopic Aspects
119(7)
7.2.1 Stochastic Models: Understanding from Eigenvalue Analysis
119(3)
7.2.2 Validity of a Rate-Law Description: Role of Macroscopic Fluctuations
122(2)
7.2.3 Time-Correlation-Function Approach: Separation of Transient Behavior from Rate Law
124(2)
7.3 Transition-State Theory
126(1)
7.4 Frictional Effects on Barrier-Crossing Rate in Solution: Kramers' Theory
127(5)
7.4.1 Low-Friction Limit
129(1)
7.4.2 Limitations of Kramers' Theory
130(1)
7.4.3 Comparison of Kramers' Theory with Experiments
131(1)
7.4.4 Comparison of Kramers' Theory with Computer Simulations
132(1)
7.5 Memory Effects in Chemical Reactions: Grote-Hynes Generalization of Kramers' Theory
132(11)
7.5.1 Frequency Dependence of Friction: General Aspects
138(1)
7.5.1.1 Frequency-Dependent Friction from Hydrodynamics
138(2)
7.5.1.2 Frequency-Dependent Friction from Mode-Coupling Theory
140(2)
7.5.2 Comparison of Grote-Hynes Theory with Experiments and Computer Simulations
142(1)
7.6 Variational Transition-State Theory
143(1)
7.7 Multidimensional Reaction Surface
144(2)
7.7.1 Multidimensional Kramers' Theory
145(1)
7.8 Transition Path Sampling
146(2)
7.9 Quantum Transition-State Theory
148(1)
7.10 Summary
149(6)
Appendix
150(5)
8 Barrierless Reactions in Solution
155(25)
8.1 Introduction
155(3)
8.2 Standard Model of Barrierless Reactions
158(8)
8.2.1 Exactly Solvable Models for Photochemical Reactions
159(1)
8.2.1.1 Oster-Nishijima Model
160(1)
8.2.1.2 Staircase Model
161(1)
8.2.1.3 Pinhole Sink Model
162(2)
8.2.2 Approximate Solutions of Realistic Models
164(1)
8.2.2.1 Delta Function Sink
164(1)
8.2.2.2 Gaussian Sink
165(1)
8.3 Inertial Effects in Barrierless Reactions: Viscosity Turnover of Rate
166(4)
8.4 Memory Effects in Barrierless Reactions
170(2)
8.5 Unusual Features of Barrierless Chemical Reactions
172(2)
8.5.1 Excitation Wavelength Dependence
172(1)
8.5.2 Negative Activation Energy
172(2)
8.6 Multidimensional Reaction Potential Energy Surface
174(1)
8.7 Analysis of Experimental Results
174(3)
8.7.1 Photoisomerization and Ground-State Potential Energy Surface
174(1)
8.7.2 Decay Dynamics of Rhodopsin and Isorhodopsin
175(2)
8.7.3 Conflicting Crystal Violet Isomerization Mechanism
177(1)
8.8 Summary
177(3)
9 Dynamical Disorder, Geometric Bottlenecks, and Diffusion-Controlled Bimolecular Reactions
180(15)
9.1 Introduction
180(1)
9.2 Passage through Geometric Bottlenecks
181(3)
9.2.1 Diffusion in a Two-Dimensional Periodic Channel
181(2)
9.2.2 Diffusion in a Random Lorentz Gas
183(1)
9.3 Dynamical Disorder
184(2)
9.4 Diffusion over a Rugged Energy Landscape
186(4)
9.5 Diffusion-Controlled Bimolecular Reactions
190(3)
9.6 Summary
193(2)
10 Electron-Transfer Reactions
195(31)
10.1 Introduction
195(1)
10.2 Classification of Electron-Transfer Reactions
196(1)
10.2.1 Classification Based on Ligand Participation
196(1)
10.2.2 Classification Based on Interactions between Reactant and Product Potential Energy Surfaces
196(1)
10.3 Marcus Theory
197(11)
10.3.1 Reaction Coordinate (RC)
198(2)
10.3.2 Free-Energy Surfaces: Force Constant of Polarization Fluctuation
200(3)
10.3.3 Derivation of ETR Rate
203(3)
10.3.4 Experimental Verification of the Marcus Theory
206(2)
10.4 Dynamical Solvent Effects on ETRs (One-Dimensional Descriptions)
208(2)
10.5 Role of Vibrational Modes in Weakening Solvent Dependence
210(6)
10.5.1 Role of Classical Intramolecular Vibrational Modes: Sumi-Marcus Theory
210(3)
10.5.2 Role of High-Frequency Vibration Modes
213(2)
10.5.3 Hybrid Model of ETR: Crossover from Solvent to Vibrational Control
215(1)
10.6 Theoretical Formulation of Multidimensional Electron Transfer
216(4)
10.7 Effects of Ultrafast Solvation on Electron-Transfer Reactions
220(1)
10.7.1 Absence of Significant Dynamic Solvent Effects on ETR in Water, Acetonitrile, and Methanol
220(1)
10.8 Summary
221(5)
Appendix
222(4)
11 Forster (or, Fluorescence) Resonance Energy Transfer (FRET)
226(33)
11.1 Introduction
226(3)
11.2 A Brief Historical Perspective
229(1)
11.3 Derivation of Forster Expression
230(9)
11.3.1 Expressions for Emission (or Fluorescence) Spectrum
234(3)
11.3.2 Absorption Spectrum
237(1)
11.3.3 The Final Forster Expression
238(1)
11.4 Applications of Forster Theory to Chemistry, Biology, and Materials Science
239(13)
11.4.1 FRET-Based Glucose Sensor
239(1)
11.4.2 FRET and Macromolecular Dynamics
239(4)
11.4.3 FRET and Single-Molecule Spectroscopy
243(4)
11.4.4 Beyond Organic Dyes as Donor-Acceptor Pairs
247(2)
11.4.5 FRET and Conjugated Polymers
249(3)
11.5 Beyond Forster Formalism
252(5)
11.5.1 Orientation Factor
252(1)
11.5.2 Point-Dipole Approximation
253(1)
11.5.3 Contribution of Optically Dark States
254(3)
11.6 Summary
257(2)
12 Vibrational-Energy Relaxation
259(21)
12.1 Introduction
259(2)
12.2 Isolated Binary Collision (IBC) Model
261(2)
12.3 Landau-Teller Expression: The Classical Limit
263(2)
12.4 Weak-Coupling Model: Time-Correlation-Function Representation of Transition Probability
265(3)
12.5 Vibrational Relaxation at High Frequency: Quantum Effects
268(3)
12.6 Experimental Studies of Vibrational-Energy Relaxation
271(1)
12.7 Computer-Simulation Studies of Vibrational-Energy Relaxation
272(3)
12.7.1 Vibrational-Energy Relaxation of Water
272(2)
12.7.2 Vibrational-Energy Relaxation in Liquid Oxygen and Nitrogen
274(1)
12.8 Quantum Interference Effects on Vibrational-Energy Relaxation in a Three-Level System: Breakdown of the Rate Equation Description
275(2)
12.9 Vibrational Life Time Dynamics in Supercritical Fluids
277(2)
12.10 Summary
279(1)
13 Vibrational-Phase Relaxation
280(16)
13.1 Introduction
280(2)
13.2 Kubo-Oxtoby Theory of Vibrational Line Shapes
282(5)
13.3 Homogeneous vs. Inhomogeneous Linewidths
287(2)
13.4 Relative Role of the Attractive and Repulsive Forces
289(1)
13.5 Vibration-Rotation Coupling
289(1)
13.6 Experimental Results of Vibrational-Phase Relaxation
290(2)
13.6.1 Semiquantitative Aspects of Dephasing Rates in Solution
291(1)
13.6.2 Subquadratic Quantum Number Dependence
291(1)
13.7 Vibrational Dephasing Near the Gas-Liquid Critical Point
292(1)
13.8 Multidimensional IR Spectroscopy
292(2)
13.9 Summary
294(2)
14 Epilogue
296(2)
Index 298
Biman Bagchi is Professor at the Indian Institute of Science in Bangalore, India.