Muutke küpsiste eelistusi

E-raamat: Molecular Spectroscopy and Quantum Dynamics

Edited by (ETH Zurich, Laboratorium fur Physikalische Chemie, CH-8093 Zurich, Switzerland), Edited by (Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, France)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Sep-2020
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128172353
  • Formaat - EPUB+DRM
  • Hind: 84,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Sep-2020
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128172353

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field.

  • Contains new insights into the dynamics and spectroscopy of electronic and nuclear motion
  • Presents the most recent developments in the detection and interpretation of ultra-fast phenomena
  • Includes a conversation on the importance of these phenomena for the understanding of chemical reaction kinetics and the variation of molecular structure
List Of Contributors
xi
Preface By The Editors xiii
1 Foundations of Time Dependent Quantum Dynamics of Molecules Under Isolation and in Coherent Electromagnetic Fields
1(42)
Roberto Marquardt
Martin Quack
1.1 Introduction
1(1)
1.2 Foundations of Molecular Quantum Dynamics Between High Energy Physics, Chemistry and Molecular Biology
2(8)
1.2.1 The Standard Model of Particle Physics (SMPP) as a Theory of Microscopic Matter Including the Low Energy Range of Atomic and Molecular Quantum Dynamics
2(2)
1.2.2 Classical Mechanics and Quantum Mechanics
4(2)
1.2.3 Time Evolution Operator Formulation of Quantum Dynamics
6(2)
1.2.4 Further Approaches to Quantum Mechanics and Molecular Dynamics
8(1)
1.2.5 Time-Dependent Quantum Statistical Dynamics
8(2)
1.3 Methods for Solving the Time-Dependent Schrodinger Equation
10(6)
1.3.1 Spectral Decomposition Method
11(1)
1.3.2 Linearization
12(1)
1.3.3 The "Chebychev" Method
13(1)
1.3.4 "Short-Iterative" Lanczos Method
13(1)
1.3.5 "Split-Operator" Technique
14(1)
1.3.6 The "Multiconfigurational Time-Dependent Hartree" Method
15(1)
1.3.7 Specific Methods for the Electronic Motion
16(1)
1.4 Hamiltonians
16(3)
1.5 Coordinates
19(1)
1.6 Quantum Dynamics Under Excitation With Coherent Monochromatic Radiation
20(8)
1.6.1 Introductory Remarks
20(1)
1.6.2 General Aspects of Atomic and Molecular Systems in Electromagnetic Field
21(2)
1.6.3 Time-Dependent Quantum Dynamics in an Oscillatory Electromagnetic Field
23(1)
1.6.4 Floquet Solution for Hamiltonians With Strict Periodicity
24(1)
1.6.5 Weak-Field Quasiresonant Approximation (WF-QRA) for Coherent Monochromatic Excitation
24(2)
1.6.6 Coherent Monochromatic Excitation Between Two Quantum States
26(2)
1.7 Concluding Remarks
28(4)
1.7.1 Time-Dependent Quantum Motion, Spectroscopy and Atomic and Molecular Clocks
28(1)
1.7.2 Hierarchy of Interactions and Hierarchy of Timescales for the Successive Breaking of Approximate Dynamical Symmetries in Intramolecular Primary Processes
29(3)
Acknowledgments
32(1)
References
32(11)
2 Exact Numerical Methods for Stationary-State-Based Quantum Dynamics of Complex Polyatomic Molecules
43(36)
Attila G. Csaszar
Csaba Fibri
Tama's Szidarovszky
2.1 Introduction
43(4)
2.2 Molecular Hamiltonians
47(6)
2.2.1 Coordinate Systems
47(1)
2.2.2 Formulation of the Classical Hamiltonian in Generalized Internal Coordinates
48(2)
2.2.3 Formulation of the Quantum-Mechanical Hamiltonian in Generalized Internal Coordinates
50(1)
2.2.4 Body-Fixed Frame Embeddings
50(1)
2.2.5 Potential Energy Hypersurfaces
51(1)
2.2.6 Basis Sets and Representations
52(1)
2.2.7 Determination of Eigenstates
53(1)
2.3 Computation of Bound Rovibrational States
53(6)
2.3.1 On the Variational Solution
54(2)
2.3.2 Symmetry in Nuclear-Motion Computations
56(1)
2.3.3 Nuclear Spin Statistics
57(1)
2.3.4 Wavefunction Analysis Tools Via Projection Techniques
58(1)
2.4 Computation of Rovibrational Resonances
59(2)
2.4.1 The Stabilization Method
59(1)
2.4.2 The Technique of Complex Coordinate Scaling (CCS)
60(1)
2.4.3 Complex Absorbing Potentials (CAP)
60(1)
2.4.4 Wavefunction Analysis Tools
60(1)
2.5 Applications
61(4)
2.5.1 Computation of All the Bound (Ro)Vibrational Eigenstates
61(2)
2.5.2 Rovibrational Computations on Quasistructural Molecules
63(1)
2.5.3 Computation of Rovibrational Resonances
64(1)
2.5.4 Stationary-State Computations Serving Dynamical Studies
65(1)
2.6 Summary and Outlook
65(2)
References
67(12)
3 2D Strong-Field Spectroscopy to Elucidate Impulsive and Adiabatic Ultrafast Electronic Control Schemes in Molecules
79(34)
Hendrike Braun
Tim Bayer
Matthias Wollenhaupt
Thomas Baumert
3.1 Introduction
79(1)
3.2 Control of Coupled Electron-Nuclear Dynamics in the Potassium Molecule
80(15)
3.2.1 The Model System K2
82(1)
3.2.2 Experimental Two-Color Setup
83(1)
3.2.3 Molecular Dynamics Simulations
84(1)
3.2.4 Coherent Control of Coupled Electron-Nuclear Dynamics
85(8)
3.2.5 Summary and Conclusion
93(2)
3.3 Adiabatic Control Scenarios in Molecules
95(15)
3.3.1 Chirped Airy Pulses
95(1)
3.3.2 Adiabatic Control Scenarios
96(1)
3.3.3 Interaction of Chirped Airy Pulses With Porphyrazine Molecules
97(1)
3.3.4 Interaction of Chirped Airy Pulses With Potassium Molecules
98(11)
3.3.5 Conclusion and Outlook
109(1)
3.4 Summary
110(1)
References
110(3)
4 Attosecond Molecular Dynamics and Spectroscopy
113(50)
Denitsa Baykusheva
Hans Jakob Worner
4.1 Introduction
113(2)
4.2 Theoretical Description of Strong-Field Phenomena
115(5)
4.2.1 Overview of the Basic Terminology
115(1)
4.2.2 Electric-Dipole Approximation and Gauge Invariance
116(1)
4.2.3 The Three-Step Model of High-Harmonic Generation
117(1)
4.2.4 High-Harmonic Generation Within the Strong-Field Approximation
118(2)
4.3 Attosecond Technology
120(7)
4.3.1 Chirped-Pulse Amplification
120(1)
4.3.2 Carrier-Envelope Phase Stabilization
121(1)
4.3.3 Pulse Postcompression Techniques
122(1)
4.3.4 Attosecond Sources in the Mid-Infrared
122(1)
4.3.5 Generation of Isolated Attosecond Pulses
123(2)
4.3.6 Attosecond Spectroscopic Techniques
125(2)
4.4 Attosecond Electron/Ion Imaging Spectroscopy
127(603)
4.5 Attosecond Electron Spectroscopy in Biorelevant Molecules
730(2)
4.6 High-Harmonic Spectroscopy
732(6)
4.6.1 Observation of Sub-Fs Nuclear Dynamics Using High-Harmonic Spectroscopy
132(2)
4.6.2 Observation of Laser-Induced Modification of the Electronic Structure
134(2)
4.6.3 Measurement and Laser Control of Charge Migration in Ionized lodoacetylene
136(2)
4.7 Attosecond Time Delays in Molecular Photoionization
138(1)
4.7.1 Phase-Resolved Near-Threshold Photoionization of Molecular Nitrogen
138(2)
4.7.2 Attosecond Photoionization Delays in the Nitrous Oxide and Water Molecules
140(2)
4.7.3 Stereo-Wigner Time Delays in Molecular Photoionization of Carbon Monoxide
142(2)
4.7.4 Phase-Resolved Two-Color Multiphoton Ionization of Chiral Molecules
144(4)
4.8 Attosecond Transient Absorption Spectroscopy
148(5)
4.8.1 Dynamics of Rydberg and Valence States In Molecular Nitrogen Probed by ATAS
148(3)
4.8.2 Time-Resolved X-Ray Absorption Spectroscopy Using a Table-Top High-Harmonic Source
151(2)
References
153(10)
5 Electronic Decay Cascades in Chemical Environment
163(36)
Kirill Gokhberg
Alexander I. Kuleff
Lorenz S. Cederbaum
5.1 Introduction
163(2)
5.2 Interatomic Decay Processes
165(12)
5.2.7 Interatomic Coulombic Decay (ICD)
165(4)
5.2.2 Electron-Transfer Mediated Decay
169(2)
5.2.3 Radiative Charge Transfer and Charge Transfer Through Curve Crossing
171(6)
5.3 Decay Cascades in Weakly Bound Atomic and Molecular Systems
177(12)
5.3.7 Auger-ICD Cascades
171(2)
5.3.2 Resonant Auger-ICD Cascades
173(5)
5.3.3 Auger-ETMD Cascade
178(3)
5.3.4 Electronic Decay Cascades in Microsolvated Clusters
181(2)
5.3.5 Interatomic Coulombic Decay Cascades in Multiply Excited Clusters
183(6)
5.4 Concluding Remarks
189(1)
Acknowledgments
190(1)
References
190(9)
6 Ah Initio Semiclassical Evaluation of Vibrational Resolved Electronic Spectra With Thawed Gaussians
199(38)
Jin Vanfcek
Tomislav BeguSic
6.1 Introduction
199(1)
6.1.1 Notation
200(1)
6.1.2 List of Acronyms
200(1)
6.2 Molecular Quantum Dynamics Induced by the Interaction With Electromagnetic Field
200(2)
6.2.1 Exact Dynamics, Electric Dipole Approximation, and Quasiresonant Condition
201(1)
6.2.2 Perturbation Theory, Zero-Temperature and Condon Approximations
201(1)
6.3 Semiclassical Approximation to Quantum Dynamics
202(2)
6.4 Thawed Gaussian Approximation
204(3)
6.4.1 Thawed Gaussian Approximation
204(1)
6.4.2 Parameter Propagation of the Thawed Gaussian Wavepacket
205(1)
6.4.3 Extended Thawed Gaussian Approximation (ETGA)
205(1)
6.4.4 Multiple Thawed Gaussians (n-TGA)
206(1)
6.4.5 (Non)Conservation of Norm, Inner Product, and Energy
206(1)
6.5 Time-Dependent Approach to Electronic Spectroscopy
207(4)
6.5.1 Linear Absorption Spectra
207(1)
6.5.2 Condon Approximation
208(1)
6.5.3 Connection to Fidelity Amplitude
208(1)
6.5.4 Herzberg-Teller Approximation
209(1)
6.5.5 Rotational Averaging of the Spectrum
210(1)
6.5.6 Time-Resolved Electronic Spectra
210(1)
6.6 "Standard Models" of Electronic Spectroscopy
211(3)
6.6.1 Several Few-Dimensional Examples
212(2)
6.7 On-the-Fly Ab Initio Implementation of the Thawed Gaussian Approximation
214(1)
6.8 Examples of on-the-Fly Ab Initio Calculations of Electronic Spectra
215(8)
6.8.1 Absorption and Photoelectron Spectra of Ammonia
215(2)
6.8.2 Absorption Spectra Beyond Condon Approximation
217(1)
6.8.3 Emission Spectra of Large Systems: Quinquethiophene
218(2)
6.8.4 Vibrationally Resolved Pump-Probe Spectra
220(3)
6.9 Conclusion and Outlook
223(2)
References
225(6)
7 Atomic and Molecular Tunneling Processes in Chemistry
231(1)
Martin Quack
Georg Seyfang
7.1 Introduction
231(1)
7.7.7 Aim and Overview of the Article
231(1)
7.1.2 The Quantum Mechanical Tunneling Process for "Heavy" Particles (Atoms and Molecules): a Tour d `Horizon'
231(2)
7.1.3 A Brief History of the Discovery of the Tunnel Effect and Further Developments
233(1)
7.2 Tunneling and Parity Violation in Chiral Molecules
234(13)
7.2.1 Exact and Approximate Studies of Tunneling in Prototypical Molecules: Hydrogen Peroxide and Ammonia Isotopomers
234(2)
7.2.2 Tunneling in Chiral Molecules Where Parity Violation Dominates Over Tunneling
236(5)
7.3 Tunneling Processes in Weakly Bound Complexes
241(3)
7.4 Tunneling Processes in Slightly Asymmetric Potentials, Tunneling Switching, and the Molecular Quantum Switch
244(3)
7.5 Isomerization Reactions Which Are Substantially Influenced by Tunneling
247(8)
7.5.1 A Brief Overview Over Some Recent Studies
247(2)
7.5.2 Ammonia as a Prototype for the Inversion at Nitrogen and Mode Selective Control of Tunneling Processes
249(3)
7.5.3 Methyl Group Internal Rotation as a Prototype for Tunneling
252(3)
7.6 Tunneling in Bimolecular Reactions
255(5)
7.6.1 Direct Bimolecular Reactions
255(1)
7.6.2 Bimolecular Reactions With Intermediate Complex Formation
256(4)
7.7 Tunneling in Ions and in Electronically Excited States
260(1)
7.8 Tunneling of Molecules Inside a Cage
261(1)
7.9 Concluding Remarks on Tunneling
262(2)
Acknowledgments
264(1)
References
265(18)
8 Ultrafast Femtosecond Dynamics and High-Resolution Spectroscopy of Molecular Cations
283(18)
Toshiaki Ando
Atsushi Iwasaki
Kaoru Yamanouchi
8.1 Introduction
283(1)
8.2 Ultrafast Hydrogen Migration in Methanol Cation
284(2)
8.3 Periodical Emission of H from Methanol
286(3)
8.4 Strong Field Vibrational Spectroscopy of Methanol Cation and Its Isotopologues
289(4)
8.5 High-Resolution Rovibrational Spectroscopy of D2 and D1
293(5)
8.6 Summary
298(1)
Acknowledgment
298(1)
References
298(3)
9 Quantum Dynamics in Water Clusters
301(1)
Marko T. Cvitas
Jeremy O. Richardson
9.1 Introduction
301(1)
9.2 Ring-Polymer Instanton Approach
302(4)
9.2.1 Semiclassical Theory
302(1)
9.2.2 Optimization Algorithm
303(1)
9.2.3 Symmetry Analysis
304(2)
9.3 Tunneling in Various Water Clusters
306(14)
9.3.1 Water Dimer
306(3)
9.3.2 Water Trimer
309(5)
9.3.3 Water Pentamer
314(2)
9.3.4 Water Hexamer Prism
316(4)
9.4 Discussion
320(7)
Acknowledgments
327(1)
References
327(1)
Author Index 327(22)
Index 349
Roberto Marquardt works in the fields of theoretical optical spectroscopy of molecules in the gas phase and at interfaces, quantum chemistry and quantum dynamics. Martin Quack works on molecular kinetics and spectroscopy with particular interest in molecular quantum dynamics and symmetries, molecular chirality and parity violation.