Muutke küpsiste eelistusi

E-raamat: Monge-Ampere Equation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their d

iverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.

Generalized Solutions to Monge-Ampère Equations.- Uniformly Elliptic Equations in Nondivergence Form.- The Cross-sections of Monge-Ampère.- Convex Solutions of det D ^2 u =1 in R^ n .- Regularity Theory for the Monge-Ampère Equation.- W^2,p Estimates for the Monge-Ampère Equation.- The Linearized Monge-Ampère Equation.- Interior Hölder Estimates for Second Derivatives.- References.- Index.

Arvustused

Very clear monograph that will be useful in stimulating new researches on the Monge-Ampère equation, its connections with several research areas and its applications. (Vincenzo Vespri, zbMATH 1356.35004, 2017)

1 Generalized Solutions to Monge--Ampere Equations
1(40)
1.1 The Normal Mapping
1(5)
1.1.1 Properties of the Normal Mapping
2(4)
1.2 Generalized Solutions
6(2)
1.3 Viscosity Solutions
8(2)
1.4 Maximum Principles
10(8)
1.4.1 Aleksandrov's Maximum Principle
11(2)
1.4.2 Aleksandrov--Bakelman--Pucci's Maximum Principle
13(4)
1.4.3 Comparison Principle
17(1)
1.5 The Dirichlet Problem
18(3)
1.6 The Nonhomogeneous Dirichlet Problem
21(5)
1.7 Return to Viscosity Solutions
26(2)
1.8 Ellipsoids of Minimum Volume
28(3)
1.9 Exercises
31(8)
1.10 Notes
39(2)
2 Uniformly Elliptic Equations in Nondivergence Form
41(14)
2.1 Critical Density Estimates
41(7)
2.2 Estimate of the Distribution Function of Solutions
48(3)
2.3 Harnack's Inequality
51(3)
2.4 Notes
54(1)
3 The Cross-Sections of Monge--Ampere
55(22)
3.1 Introduction
55(2)
3.2 Preliminary Results
57(6)
3.3 Properties of the Sections
63(12)
3.3.1 The Monge--Ampere Measures Satisfying (3.1.1)
63(5)
3.3.2 The Engulfing Property of the Sections
68(2)
3.3.3 The Size of Normalized Sections
70(5)
3.4 Notes
75(2)
4 Convex Solutions of det D2u = 1 in Rn
77(14)
4.1 Pogorelov's Lemma
77(4)
4.2 Interior Holder Estimates of D2u
81(3)
4.3 Cα Estimates of D2u
84(5)
4.4 Notes
89(2)
5 Regularity Theory for the Monge--Ampere Equation
91(32)
5.1 Extremal Points
91(2)
5.2 A result on extremal points of zeroes of solutions to Monge--Ampere
93(3)
5.3 A Strict Convexity Result
96(5)
5.4 C1,α Regularity
101(10)
5.4.1 C1,α Estimates
106(5)
5.5 Examples
111(10)
5.5.1 A Generalization of Formula (5.5.1)
112(9)
5.6 Notes
121(2)
6 W2,p Estimates for the Monge--Ampere Equation
123(30)
6.1 Approximation Theorem
123(4)
6.2 Tangent Paraboloids
127(2)
6.3 Density Estimates and Power Decay
129(8)
6.4 Lp Estimates of Second Derivatives
137(4)
6.5 Proof of the Covering Theorem 6.3.3
141(7)
6.6 Regularity of the Convex Envelope
148(2)
6.7 Notes
150(3)
7 The Linearized Monge--Ampere Equation
153(40)
7.1 Introduction
153(2)
7.2 Normalized Solutions
155(1)
7.3 Critical Density
156(5)
7.4 Double Section Property
161(11)
7.4.1 A∞ Condition on Sections
163(2)
7.4.2 Behavior of nonnegative Solutions in Expanded Sections
165(7)
7.5 A Calderon-Zygmund Type Decomposition for Sections
172(9)
7.6 Power Decay
181(6)
7.7 Interior Harnack's Inequality
187(4)
7.8 Notes
191(2)
8 Interior Holder Estimates for Second Derivatives
193(18)
8.1 Introduction
193(1)
8.2 Interior C2,α Estimates
193(16)
8.3 Notes
209(2)
Bibliography 211(4)
Index 215
Cristian Gutierrez is a Professor in the Department of Mathematics at Temple University in Philadelphia, PA, USA. He teaches courses in Partial Differential Equations and Analysis.