Muutke küpsiste eelistusi

E-raamat: Moon: Resources, Future Development and Settlement

  • Formaat: PDF+DRM
  • Sari: Springer Praxis Books
  • Ilmumisaeg: 27-Nov-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387739823
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 60,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Praxis Books
  • Ilmumisaeg: 27-Nov-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9780387739823
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Moon: Resources, Future Development and Settlement describes feasible human settlement of the Moon in the coming century. Small scale, tele-operated and autonomous robotic in-situ resource utilization (ISRU) projects are first, followed by electric power, communication, and transportation networks manufactured from lunar resources. These infrastructure networks are field tested an commissioned in the polar regions of the Moon, and permanent human settlements are then established. Through several phases of development, the utility networks grow, and the number of permanently inhabited bases increases to inculde all areas of interest on the Moon. The book stresses that the envisioned "Planet Moon Project" will link the technological and cultural expertise of humanity to the virtually limitless resources of space. From that beginning, the people of the Earth reap substatntial benefits from space, and the human species will evolve into a spacefaring civilization.

Arvustused

From the reviews of the second edition:









"This is basically a handbook describing what must be done to return to the moon, build permanent bases, and use them as a springboard for economic development such as mining, as well as to push further into the solar system and beyond. This book would be a valuable addition to the shelves of technical libraries, particularly those associated with schools of aeronautics, space exploration, or engineering. Summing Up: Recommended. Upper-division undergraduates through professionals." (C. G. Wood, CHOICE, Vol. 45 (7), 2008)



"The Moon is a broad-scoped treatment of future lunar development, with a lot of technical information in an easy-to-read style. this book is an interesting read for all different types of Earth-bound lunar enthusiasts. The book briefly covering the formation, characteristics, and historical explorations of the Moon starting with Apollo. The book has well-described ideas and illustrations for lunar development concepts. The scope includes discussion of robotics technology and its near-term application to lunar operations." (Gordon Woodcock, National Space Society, September, 2009)

Preface xxi
Acknowledgements xxiii
Foreword xxv
Buzz Aldrin
List of figures
xxix
List of tables
xxxv
Author biographies xxxvii
Introduction xxxix
The Spacefaring Age xxxix
Advantages and opportunities xl
Proximity to Earth xl
Availability of energy and material resources xl
Gravity xl
Protection from space hazards xli
Science opportunities xli
Education xlii
Commerce xlii
Earth benefits xliii
International cooperation xliii
Human survival xliii
Exploration of space xliv
The future Moon xliv
The Moon beckons xlvi
Lunar origins and physical features
1(24)
The origin of the Moon
1(2)
Physical features of the Moon
3(12)
Mountain ranges - highlands and basin rings
4(2)
Basins and basin rings
6(2)
Craters
8(3)
Maria
11(1)
Ridges, lava tubes, and rilles
11(4)
Exploration of the Moon
15(9)
The Apollo experiments
15(5)
Recent missions to the Moon
20(4)
Summary
24(1)
Science opportunities - engineering challenges
25(24)
Introduction
25(1)
Geoscience
25(3)
Geologic reconnaissance missions
26(1)
Field work
26(2)
Astronomy from the Moon
28(13)
Earth-based astronomy
29(1)
Astronomy from Earth orbit
29(1)
Moon-based astronomy
30(11)
Other science opportunities
41(2)
Cosmic radiation and the solar wind
41(1)
Particle accelerators
42(1)
Psychology and sociology
42(1)
Physiology
42(1)
Engineering challenges
43(4)
Robots and tele-operations
43(1)
Chemistry
44(1)
Health-care challenges
44(1)
Life-support systems
45(1)
Mining and manufacturing operations in the lunar environment
46(1)
Summary
47(2)
Lunar resources
49(10)
Introduction
49(1)
Elements
49(2)
The lunar regolith
51(1)
Water
51(1)
Sunlight
52(1)
Sun-synchronous operations and ``Magellan routes'' of discovery
52(1)
Vacuum
53(1)
Temperature profile
54(1)
Physical mass of the Moon
54(1)
Topography
55(1)
Sterile environment
55(1)
Low gravity
56(1)
Orbital mechanics
56(1)
Lagrange points
57(1)
Summary
58(1)
Lunar robotic and communication systems
59(24)
Introduction
59(1)
Objectives
59(2)
Continued science investigations
59(1)
Continuous operations
60(1)
Mining and manufacturing
60(1)
Preparing for the return of humans
60(1)
Cost and schedule issues
61(2)
Investment consortia: interdisciplinary and inter-institutional cooperation
62(1)
Bootstrapping lunar development
63(1)
Robotics technology for lunar base development
64(3)
Introduction
65(1)
Apollo experience with robots for exploration
65(1)
International Space Station experience: robots for science, assembly and maintenance
65(2)
Deep-ocean experience - production robots
67(1)
Technological challenges
67(4)
Latency
68(1)
Bandwidth requirements
69(1)
Infrastructure requirements
69(2)
Lunar surface infrastructure requirements
71(1)
The robot assistant
71(3)
Evaluating robotic technology for the Moon
72(1)
Difficulty aspects
72(1)
Benefit aspects
73(1)
Pervasive subtasks and capabilities
74(2)
Acquiring imagery
74(1)
Lessons learned from shuttle, space station, industry, and medicine
75(1)
Recommendations
76(4)
Robo Tractor
76(1)
Engineering standards
77(1)
Incorporate a tele-robotic control mode into autonomous systems
77(1)
Design early for robots
77(1)
Plan ahead
78(1)
Build a little, test a little
78(1)
Develop robot surrogate capabilities
79(1)
Mobility is a key
80(1)
Launch vehicle capability
80(1)
Conclusion
81(2)
The first lunar base
83(14)
Introduction
83(1)
Lunar base site selection criteria
84(1)
Mons Malapert
84(3)
Site characteristics and mission opportunities
87(1)
Initial robotic operations at the lunar base
87(1)
The lunar ``seed''
87(1)
Candidate lunar seed: The Seleno-lab
88(3)
Mission concept
88(1)
Design requirements
88(1)
Fixed-base facility
89(1)
Design process
89(1)
Investigation objectives
89(1)
Operations
90(1)
Production
90(1)
Growth of the lunar base
90(1)
Dash to the pole
91(1)
Circumpolar ``Magellan routes'' excursions
92(1)
International cooperation and commercial participation
92(1)
The embryonic circumferential infrastructure
93(1)
Summary
94(3)
Return of humans to the Moon
97(20)
Introduction
97(1)
Precursor missions
97(1)
Return of the humans
98(1)
Human factors
99(4)
The MALEO site office
100(1)
Environmental control and life-support system (ECLSS)
101(1)
Physico-chemical (non-biological) systems
102(1)
Biological-biospheric systems
102(1)
Medical care
103(1)
LEA (lunar excursion activities)
103(2)
Nomad Explorer
105(1)
Growth of the first lunar base
105(2)
Earth-Moon transportation systems
107(1)
The lunar railroad
108(3)
Power towers
111(2)
Rail link to the south pole
113(1)
The second lunar base
113(1)
Summary
114(3)
Circumferential lunar utilities
117(14)
Introduction
117(1)
Lunar electric power
117(3)
Nuclear power
118(1)
Solar electric power
119(1)
The Lunar Power System (LPS)
120(1)
Circumferential utilities
121(1)
Construction of the utilities infrastructure
122(2)
Lunar telecommunications network
123(1)
Lunar pipeline system
123(1)
Flywheel farm
124(1)
The Newton-Shackleton cable car system
124(1)
Development of the south polar region
124(5)
Lunar agriculture
126(1)
Emergence of lunar cities
127(2)
Summary
129(2)
The Planet Moon
131(26)
Introduction
131(1)
Global development
131(1)
Cislunar transport and logistics systems
131(5)
Earth spaceports
132(1)
The Earth orbital station
133(1)
Cislunar vehicles
133(2)
Lunar orbital station
135(1)
Lunar lander craft
135(1)
Lunar base port
136(3)
Retirement and rehabilitation
136(3)
The Maglev rail system
139(3)
The Sun-synchronous railroad
140(1)
The 345th meridian magnetic-levitation high-speed transport train
140(2)
The ballistic cargo delivery system
142(1)
Science projects
142(4)
Astronomy
144(1)
The quarantine and biohazard facilities experimentation
145(1)
Hadron collider
145(1)
Tourism on the lunar continent
146(1)
Next-generation transportation systems
147(7)
Earth-Moon cycler
147(3)
Tethers
150(1)
Space elevators
151(2)
Mass drivers
153(1)
Summary
154(3)
Governance of the Moon
157(12)
Introduction
152(5)
Lunar Government Organization
157(1)
Lunar governance and the Outer Space Treaties
158(2)
Space law
160(1)
Creation of a new lunar government
161(2)
The a-posteriori approach to lunar governance
161(1)
The a-priori approach to a new government
162(1)
Port authorities
163(2)
The LEDA model of lunar governance
163(2)
Long-Term Planning and Coordination of Lunar Science and Development Projects
165(2)
Lunar resource management
165(1)
Standards for lunar development
166(1)
Fundraising for the lunar development
166(1)
Growth of the Lunar Government
167(1)
Summary
168(1)
Endless frontiers
169(30)
Introduction
169(1)
``Spaceport'' Moon
169(2)
Three emerging technologies
171(4)
Solar sails
171(3)
Energy transmission from the Moon
174(1)
Solar power satellites
175(1)
Exploration and development of the solar system
175(18)
Mercury
175(2)
Venus
177(1)
Near-Earth objects (NEOs)
178(4)
Earth
182(2)
Mars
184(6)
The asteroid belt
190(1)
Comets
190(1)
Jupiter
191(1)
Saturn, Uranus, and Neptune
192(1)
Pluto, Eris, and Sedna
192(1)
The Kuiper Belt and Oort Cloud
193(1)
Robotic missions to the stars
193(3)
The cosmic ``seed''
193(1)
Robotic missions to the Proxima Centauri star system
194(2)
Human missions to the stars
196(1)
The great diaspora
197(1)
Summary
197(2)
Conclusion
199(2)
APPENDICES
A. Robots on Planet Moon
201(34)
Robotics technology for the first and follow-up lander missions to the south pole
201(10)
Benefits of sending robotic lander missions to the lunar polar regions
201(4)
Other ISRU experiments (stationary or mobile)
205(3)
Robotic development of the south pole infrastructure
208(2)
Robotic explorations of the lower latitudes
210(1)
Robotic tasks and subtasks
211(15)
Robotic tasks for planetary surface missions
211(4)
Pervasive subtasks, activities, and capabilities
215(5)
Specific high-value robotic technologies for lunar development
220(3)
A ``generic'' sortie on a planetary surface
223(3)
Conceptual design for Robo Tractor: a multi-purpose excavating and regolith-moving machine
226(7)
Summary
226(1)
Basic requirements and design elements
226(4)
Preliminary design synthesis
230(2)
Example development cycle for Robo Tractor
232(1)
Conclusions
233(1)
References
233(2)
B. Lunar regolith properties
235(22)
Chemical and mineralogical differences between lunar regolith and soils on Earth
236(6)
Mineralogy and petrology
236(1)
Maturity
237(1)
Agglutinates
238(1)
Solar wind volatiles implantation
238(2)
Breccias
240(1)
Glasses
240(1)
KREEP (K, Rare Earth Elements, and P)
241(1)
Physical properties of the lunar regolith
242(9)
Geotechnical properties
243(1)
Grain size distribution terminology
244(2)
Particle shapes
246(1)
Lunar soil grain shapes and sizes
247(4)
Dust
251(4)
Electrostatic charging
251(1)
Dust mitigation
252(3)
Summary
255(1)
References
255(2)
C. Lunar soil simulants
257(12)
What is a simulant?
257(1)
Types of simulants
257(5)
Simulants for consumables extraction experiments
258(1)
Simulants for civil engineering experiments
259(3)
Future Development of Simulants
262(3)
Ongoing research
262(1)
Standardized simulants
263(2)
Summary
265(1)
References
266(3)
D. In-situ resource utilization (ISRU)
269(36)
Power
270(10)
Solar power cells for electricity
270(6)
Mirrors and solar concentrators
276(1)
Rocket fuels and oxidizers
277(1)
Other consumables
278(2)
Roads, Habitats and Facilities
280(12)
Excavation and transport
280(5)
Construction
285(7)
Manufacturing of Other Items
292(4)
Beneficiation
292(1)
Processing of beneficiated materials
293(1)
Chemical vapor deposition process
293(2)
Manufacturing of high-tech materials
295(1)
Challenges to be Overcome
296(1)
Mineral rights and commercial use rights
296(1)
Political issues
296(1)
Breaking old habits
297(1)
Summary
297(1)
References
297(8)
E. Proposed processes for lunar oxygen extraction
305(50)
Introduction
305(1)
Trade studies
305(6)
Criswell, 1983; and Davis, 1983
306(1)
Simon, 1985
306(1)
Eagle Engineering, 1985
306(1)
Woodcock, 1986
307(1)
Astronautics Corporation of America, 1987
308(1)
Weaver, 1989
309(1)
Woodcock, 1989
310(1)
Understanding the assumptions
310(1)
Summary of trade studies
311(1)
Subsystems
311(1)
Proposed oxygen-extraction processes
311(1)
Gas/Solid systems
312(12)
Ilmenite reduction by hydrogen (mare only)
312(4)
Variants on the hydrogen-reduction-of-ilmenite process
316(1)
Hydrogen reduction of glass
317(1)
Hydrogen reduction of other lunar materials and lunar simulants
318(1)
Fluorine extraction (feedstock-independent)
319(2)
Hydrogen sulfide (H2S) reduction
321(1)
Carbochlorination
321(2)
Chlorine plasma extraction
323(1)
Gas/Liquid processes
324(3)
Carbothermal reduction of anorthite
325(1)
Carbon-monoxide-silicate-reduction system
325(2)
Bulk electrolysis processes
327(4)
Magma electrolysis (feedstock-independent)
327(4)
Fluxed electrolysis or molten salt electrolysis (feedstock-independent)
331(1)
Pyrolysis processes
331(4)
Magma partial oxidation (mare only - depends on iron)
331(1)
Vapor-phase reduction (feedstock-independent)
332(2)
Ion (plasma) separation (feedstock-independent)
334(1)
Slurry/Solution processes
335(8)
HCI dissolution and electrolysis (mare only - ilmenite only)
335(1)
H2SO4 dissolution and electrolysis (mare only)
336(1)
HF dissolution and electrolysis (feedstock-independent)
337(2)
Lithium, aluminum, or sodium reduction (feedstock-independent)
339(1)
Reduction by aluminum
340(2)
Caustic dissolution and electrolysis
342(1)
Ion sputtering (feedstock-independent)
342(1)
Process comparisons
343(2)
Prototype plant designs
345(3)
Prototype robotic lander for ISRU
345(2)
Suitcase-size hydrogen-reduction plant
347(1)
Roxygen
347(1)
Sulfur and H2S hazards
348(1)
Conclusions
349(1)
References
349(6)
F. Facilitating space commerce through a lunar economic development authority
355(16)
Introduction
356(3)
Attitudinal change
356(2)
Commercial, legal, and political challenges in lunar enterprise
358(1)
Space economic development authorities
359(3)
Lunar Economic Development Authority
362(3)
How will LEDA facilitate new lunar markets?
362(2)
How will LEDA be legally constituted?
364(1)
Current endeavors
365(1)
Conclusions
366(1)
About the authors
367(1)
Endnotes
367(1)
References
368(3)
G. Quality standards for the lunar governance
371(6)
Creation of a lunar government
371(1)
Jurisdiction
371(1)
Purpose of government
371(1)
Constitutional rule of law
372(1)
The need for quality lawmaking
372(2)
Quality standards for laws
373(1)
Summary
374(2)
References
376(1)
H. Helium-3
377(5)
Introduction
377(1)
Helium-3 fusion
378(1)
Regolith resources of helium-3
378(1)
References
379(3)
I. NASA and self-replicating systems: Implications for nanotechnology
382(3)
Further information
384(1)
J. Human factors
385(14)
Hazards in the lunar environment
385(3)
Radiation
385(2)
Lunar dust
387(1)
Lunar gravity
387(1)
Physiological needs of human habitation
388(2)
Oxygen
388(1)
Water
388(1)
Food
389(1)
Controlled ecological life-support system
390(3)
Food crops
391(1)
Waste management
391(2)
Experiments
393(1)
Psychological needs of human habitation
393(3)
References
396(3)
K. Maglev trains and mass drivers
399(6)
Electromagnetic transportation
399(1)
Maglev trains
399(1)
Mass drivers
400(3)
``Capture'' operation of mass drivers
401(1)
Human-rated mass drivers
402(1)
Summary
403(1)
References
403(2)
L. Development of the lunar economy
405(8)
Introduction
405(1)
Commercial space operations
405(1)
Funds for lunar development
406(1)
Business operations example: The ``Lunar Electric Power Company''
406(2)
A self-developing lunar economy
408(1)
Ethical standards
408(2)
Summary
410(1)
References
410(3)
M. Lunar mysteries
413(12)
Lunar transient phenomena
413(2)
Lunar horizon glow
415(2)
Mystery of the rusty rocks
417(4)
Mystery of the Reiner Gamma magnetic anomaly
421(2)
Summary
423(1)
References
423(2)
N. Milestones of lunar development
425(2)
O. International Lunar Observatory/Association
427(6)
Introduction
427(1)
History
427(1)
International, commercial, and individual support
428(1)
Current progress with nations
428(1)
Hawaii
428(1)
Canada
428(1)
China
428(1)
India
429(1)
Italy
429(1)
Japan
429(1)
Russia
429(1)
Financing
429(1)
Presumed facts
429(1)
Richards' master plan
430(1)
ILO features and benefits
431(2)
P. Cislunar orbital environment maintenance
433(14)
Abstract
434(1)
Introduction
434(1)
Earth orbital environment 2001
435(1)
Architectural elements of the Satellite Service Facility (SSF)
435(2)
Advanced technologies identification
436(1)
A synergetic supporting architecture
437(2)
The existing manned national Space Transportation System (STS)
437(1)
Advanced Tracking and Data Relay Satellite System (ATDRSS)
437(1)
The orbital debris removal system
438(1)
An artificial gravity facility in Earth orbit
438(1)
Lunar infrastructure development architecture
438(1)
Spacecraft salvage operations architecture
438(1)
Lunar environment maintenance
439(1)
Mission design and operations
439(3)
ST-1 mission operations
439(1)
ST-2 mission operations
440(1)
Merits and limitations
441(1)
Recommendations
442(1)
Economics of the satellite service facility
443(1)
Conclusion
444(1)
References
445(2)
Q. The Millennial Time Capsule and L-1 Artifacts Museum
447(10)
Millennial Time Capsule
447(1)
Space Activities: A Broad Global Humanitarian Perspective
448(2)
A humanitarian concept based on space activities
448(2)
Technologies at the threshold of maturity
450(1)
The Lunar Human Repository architecture
450(3)
Merits of the architecture
452(1)
A natural evolution scenario for the facility
452(1)
The case for international subsidies
453(1)
Archives of humankind
453(1)
Conclusion, Millenial Time Capsule
454(1)
L-1 Artifacts Museum
454(3)
R. MALEO: Modular assembly in low Earth orbit
457(20)
Abstract
457(1)
Introduction
457(1)
Development of the MALEO strategy
458(3)
Configuration of the Lunar Habitation Base-1 (LHB-1)
461(1)
Components of the Lunar Habitation Base-1 (LHB-1)
462(3)
The Modular Orbital Transfer Vehicle (MOTV)
465(1)
The Lunar Landing System (LLS)
465(1)
The lunar MALEO assembly and deployment of LHB-1
465(5)
Principles of pre-stressed trusses
470(1)
MALEO LHB-1 Structural System
470(1)
MALEO: transportation loads and forces
471(1)
Advantages of the MALEO strategy
472(1)
The challenges
473(1)
Conclusions
473(1)
Acknowledgments
474(1)
References
475(2)
S. Logistics for the Nomad Explorer assembly assist vehicle
477(20)
Abstract
477(1)
Introduction
477(1)
Development of the Nomad Explorer strategy
478(3)
The Nomad Explorer vehicle systems architecture
481(6)
The problem with conventional extra-vehicular activity
487(1)
Rationale for an alternative manned EVA system
487(2)
The EVA Bell architecture
489(1)
Challenges posed by the EVA Bell
490(2)
Advantages of the EVA Bell system
492(1)
Advantages of the Nomad Explorer strategy
492(1)
Technology for the Nomad Explorer strategy
493(1)
The Nomad Explorer budget
494(1)
Conclusion
494(1)
Acknowledgments
495(1)
References
495(2)
T. Beyond our first Moonbase: The future of human presence on the Moon
497(10)
Beginnings
497(1)
Cradlebreak
498(1)
Cast and sintered basalt
498(1)
Lunar concrete, glass-glass composites (GGC), and silicon
498(1)
A strategy for industrial diversification
498(2)
Paying for the things we must import
499(1)
The Moon from a settler's point of view
500(4)
Making themselves at home
500(1)
But they have to live underground, for heaven's sake!
501(1)
What about the outdoorsmen amongst us?
501(2)
Agriculture and mini-biospheres
503(1)
One settlement, a world ``doth not make''
504(1)
Getting through the nightspan
504(1)
The pattern emerges
504(1)
The Necessary Gamble
504(3)
Token presence or real settlement
504(3)
U. Lunar rock structures
507(6)
Introduction
507(1)
Combating the lunar environment
507(1)
Rock structures
508(1)
Rocks-tools - uses
508(2)
Technology continuum dilemma
510(1)
Merits and challenges
510(1)
Challenges
510(1)
Conclusion
511(1)
References
512(1)
V. Rapid prototyping: Layered metals fabrication technology development for support of lunar exploration at NASA/MSFC
513(12)
Introduction
513(1)
Fabrication technologies overview
514(9)
Fabrication processes discussion
515(1)
Materials set discussion
516(1)
Additive fabrication processes assessment
516(1)
The Electron Beam Melting (EBM) technology
517(2)
Material feasibility studies of selected materials
519(4)
Conclusions
523(1)
Acknowledgments
523(1)
References
524(1)
Bibliography 525(26)
Index 551
Following the Apollo lunar expeditions which culminated in the exploration by the Apollo astronauts on parts of the lunar surface, humankind has not revisited the Moon since 1972. In this 21st Century the resources of humankind are now sufficiently advanced to support the global human exploration and development of the Moon. In this new Millennium several nations, including Japan and China, have stated their intention to develop a lunar base during the first half of this century.









The major themes of the 1st edition of  THE MOON Resources, Future Development and Colonization, a Wiley/Praxis title published in hardback at £34.95 in1999, which has to date sold 1200 plus, remain valid today.



For example, the Moon WILL be the next principal focus of space exploration and development, and the south polar region is increasingly likely as the first site of permanent lunar activities, as the authors predicted. Major events in space that have taken place since the publication of the 1st edition of the Moonbook.