|
Part I Spatial Statistics |
|
|
|
1 Introduction to Part I: Spatial Statistics |
|
|
3 | (6) |
|
|
3 | (1) |
|
1.2 Polish Employment Data: 2006--2013 |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (3) |
|
2 Spatial Autocorrelation and the p-Median Problem |
|
|
9 | (16) |
|
|
9 | (1) |
|
2.2 Eigenvector Spatial Filtering in a Nutshell |
|
|
9 | (1) |
|
2.3 Imputing Missing Spatial Data |
|
|
10 | (2) |
|
2.4 The Location--Allocation Problem |
|
|
12 | (2) |
|
2.5 Location--Allocation Solutions in the Presence of Missing and Imputed Data |
|
|
14 | (4) |
|
2.6 Relationships Between Spatial Autocorrelation and Solutions to Location-Allocation Problems |
|
|
18 | (5) |
|
|
23 | (2) |
|
|
23 | (2) |
|
3 Space-Time Autocorrelation |
|
|
25 | (10) |
|
|
25 | (1) |
|
3.2 Specifying a Space-Time Moran Coefficient |
|
|
25 | (2) |
|
3.3 Properties of the Space-Time Moran Coefficient |
|
|
27 | (3) |
|
3.4 Eigenvector Space-Time Filtering |
|
|
30 | (2) |
|
3.5 Omitted Variables in a Description of Space-Time Response Variables |
|
|
32 | (1) |
|
|
33 | (2) |
|
|
34 | (1) |
|
4 The Relative Importance of Spatial and Temporal Autocorrelation |
|
|
35 | (14) |
|
|
35 | (1) |
|
4.2 Random Effects: SSRE and SURE Components |
|
|
36 | (5) |
|
4.3 Estimating a SURE Term: A Sensitivity Analysis |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
43 | (4) |
|
|
47 | (2) |
|
|
47 | (2) |
|
5 The Spatial Weights Matrix and ESF |
|
|
49 | (12) |
|
|
49 | (1) |
|
5.2 Spatial Weights Matrix Comparisons |
|
|
49 | (7) |
|
5.2.1 Some Binary SWM Comparisons |
|
|
52 | (2) |
|
5.2.2 Some Row-Standardized SWM Comparisons |
|
|
54 | (1) |
|
5.2.3 Variance Stabilizing Standardization |
|
|
55 | (1) |
|
5.3 Comparisons of Spatial Weights Matrix Eigenvectors |
|
|
56 | (2) |
|
5.4 Competing Model Specifications: Spatial Autoregressions and ESFs |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
60 | (1) |
|
6 Clustering: Spatial Autocorrelation and Location Quotients |
|
|
61 | (12) |
|
|
61 | (1) |
|
|
61 | (1) |
|
6.3 The Multivariate Space-Time Structure of Polish LQs: 2006--2013 |
|
|
62 | (2) |
|
6.4 Spatial Autocorrelation and LQs |
|
|
64 | (1) |
|
6.5 Spatially Adjusted LQs for Polish Employment |
|
|
65 | (1) |
|
6.6 Space-Time Description of the Polish LQs |
|
|
66 | (1) |
|
6.7 LQ Spatial Clusters in the Clustering of Employment |
|
|
66 | (4) |
|
|
70 | (3) |
|
|
70 | (3) |
|
7 Spatial Autocorrelation Parameter Estimation for Massively Large Georeferenced Datasets |
|
|
73 | (16) |
|
|
73 | (1) |
|
7.2 Maximum Likelihood Estimation |
|
|
73 | (6) |
|
7.2.1 A Large Remotely Sensed Image Example |
|
|
75 | (3) |
|
|
78 | (1) |
|
7.3 The Sampling Variance of p |
|
|
79 | (6) |
|
7.3.1 The Asymptotic Variance for Massively Large Georeferenced Datasets: The First-Order Eigenvalue Term |
|
|
81 | (2) |
|
7.3.2 The Asymptotic Variance for Massively Large Georeferenced Datasets: The Second-Order Eigenvalue Term |
|
|
83 | (1) |
|
7.3.3 The Asymptotic Variance for Massively Large Georeferenced Datasets: The Residual Term |
|
|
84 | (1) |
|
7.3.4 A Preliminary Asymptotic Variance Approximation Accuracy Assessment |
|
|
85 | (1) |
|
7.4 Irregular Surface Partitioning Spatial Autocorrelation Simulation Experiments |
|
|
85 | (1) |
|
|
86 | (3) |
|
|
87 | (2) |
|
8 Space-Time Data and Semi-saturated Fixed Effects |
|
|
89 | (10) |
|
|
89 | (1) |
|
8.2 What Is Fixed Effects? |
|
|
90 | (1) |
|
8.3 Testing for Fixed Effects |
|
|
91 | (1) |
|
8.4 Fixed Effects: SSFE and SUFE Components |
|
|
91 | (2) |
|
8.5 Estimating a SUFE Term: Selected Sensitivity Analyses |
|
|
93 | (2) |
|
8.6 An Exploration of Interaction Terms |
|
|
95 | (2) |
|
|
97 | (2) |
|
|
97 | (2) |
|
9 Spatial Autocorrelation and Spatial Interaction Gravity Models |
|
|
99 | (14) |
|
|
99 | (1) |
|
9.2 The Doubly Constrained Gravity Model: A Poisson Specification That Accounts for Spatial Autocorrelation |
|
|
99 | (1) |
|
9.3 Modeling Spatial Autocorrelation |
|
|
100 | (2) |
|
9.4 Spatial Autocorrelation and Provincial-Level Joumey-to-Work Flows |
|
|
102 | (2) |
|
9.5 Infill and Increasing Domain Analyses |
|
|
104 | (6) |
|
9.5.1 A Comparative Infill Analysis of Journey-to-Work Flows |
|
|
106 | (3) |
|
9.5.2 A Comparative Increasing Domain Analysis of Journey-to-Work Flows |
|
|
109 | (1) |
|
|
110 | (3) |
|
|
112 | (1) |
|
10 General Conclusions About Spatial Statistics |
|
|
113 | (12) |
|
|
113 | (1) |
|
10.2 Spatial Autocorrelation and the p-Median Problem |
|
|
113 | (1) |
|
10.3 Space-Time Autocorrelation |
|
|
114 | (1) |
|
10.4 The Relative Importance of Spatial and Temporal Autocorrelation |
|
|
115 | (1) |
|
10.5 The Spatial Weights Matrix and Eigenvector Spatial Filtering |
|
|
115 | (2) |
|
10.6 Clustering: Spatial Autocorrelation and Location Quotients |
|
|
117 | (1) |
|
10.7 Spatial Autocorrelation Parameter Estimation for Massively Large Georeferenced Datasets |
|
|
118 | (1) |
|
10.8 Space-Time Data and Semi-saturated Fixed Effects |
|
|
119 | (1) |
|
10.9 Spatial Autocorrelation and Spatial Interaction Gravity Models |
|
|
120 | (1) |
|
10.10 Concluding Comments |
|
|
120 | (5) |
|
|
121 | (4) |
|
Part II Spatial Econometrics |
|
|
|
11 Introduction to Part II: Spatial Econometrics |
|
|
125 | (2) |
|
|
126 | (1) |
|
12 Tinbergen-Bos Systems: Combining Combinatorial Analysis with Metric Topology |
|
|
127 | (22) |
|
|
128 | (1) |
|
12.2 TBS Analysis and First Extensions |
|
|
128 | (4) |
|
12.2.1 Input-Output Relations (Kuiper and Paelinck 1984) |
|
|
129 | (1) |
|
12.2.2 Complexity (Paelinck 2000b) |
|
|
130 | (1) |
|
12.2.3 Hierarchy (Paelinck 1995, 1997, Part 1) |
|
|
131 | (1) |
|
12.2.4 Objective Function |
|
|
132 | (1) |
|
|
132 | (5) |
|
12.3.1 Manhattan Circles and Distance Frequencies (Kuiper et al. 1990) |
|
|
132 | (1) |
|
12.3.2 Equations and Weights |
|
|
133 | (3) |
|
12.3.3 Location-Allocation Aspects |
|
|
136 | (1) |
|
12.4 The Endogenous Number of Plants with Economies of Scale and Scope |
|
|
137 | (1) |
|
12.4.1 Economies of Scale |
|
|
137 | (1) |
|
12.4.2 Economies of Scope |
|
|
138 | (1) |
|
|
138 | (3) |
|
|
139 | (1) |
|
|
139 | (1) |
|
12.5.2.1 Fixed Coefficients |
|
|
139 | (1) |
|
12.5.2.2 Variable Coefficients |
|
|
140 | (1) |
|
12.5.2.3 Economies of Scale and Scope |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
141 | (5) |
|
12.6.1 On Theoretical Spatial Economics |
|
|
142 | (1) |
|
12.6.2 On Spatial Econometrics |
|
|
143 | (3) |
|
|
146 | (3) |
|
13 Time, Space, or Econotimespace? |
|
|
149 | (18) |
|
13.1 A Conceptual Analysis |
|
|
149 | (4) |
|
|
149 | (1) |
|
|
150 | (2) |
|
13.1.3 Space-Time, Rather Than Just Space or Time? |
|
|
152 | (1) |
|
13.1.4 Toward Spatial Econometrics |
|
|
153 | (1) |
|
13.2 Space--Time Spatial Econometrics |
|
|
153 | (12) |
|
13.2.1 Space--Time Relations |
|
|
154 | (1) |
|
13.2.2 Space and Time Misspecification in Spatial Econometrics |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (2) |
|
|
162 | (1) |
|
13.2.2.6 A General Approach |
|
|
163 | (2) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (2) |
|
14 Hybrid Dynamical Systems and Control |
|
|
167 | (10) |
|
|
167 | (1) |
|
14.2 A Spatial Econometric Specification |
|
|
168 | (4) |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
175 | (1) |
|
|
175 | (2) |
|
15 The W Matrix Revisited |
|
|
177 | (10) |
|
15.1 Consistent Spatial Modeling |
|
|
177 | (3) |
|
15.2 Lotka-Volterra Systems as Generalized Logistic Models |
|
|
180 | (2) |
|
15.3 Characterizing the A Matrix in an Extended SAR Model |
|
|
182 | (3) |
|
|
185 | (1) |
|
|
185 | (2) |
|
16 Clustering: Some Nonstandard Approaches |
|
|
187 | (14) |
|
|
187 | (5) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
16.2 Spatial Econometrics |
|
|
192 | (7) |
|
|
192 | (1) |
|
16.2.1.1 Connectropy (Kaashoek et al. 2004) |
|
|
192 | (2) |
|
16.2.1.2 Clustering (Paelinck 2004) |
|
|
194 | (2) |
|
16.2.2 Applications and Comparisons |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (1) |
|
16.3 Comparison of Results |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | (1) |
|
17 Linear Expenditure Systems and Related Estimation Problems |
|
|
201 | (14) |
|
17.1 Linear Expenditure Systems (Paelinck 1964; Solari 1971) |
|
|
201 | (3) |
|
17.1.1 Level Specification |
|
|
201 | (2) |
|
17.1.2 Growth Rate Model 1 |
|
|
203 | (1) |
|
17.1.3 Growth Rate Model 2 |
|
|
204 | (1) |
|
|
204 | (1) |
|
17.2 Different Estimators Compared |
|
|
204 | (6) |
|
17.2.1 Simultaneous Dynamic Least Squares |
|
|
205 | (1) |
|
17.2.2 Reduced Form and Two Stage Least Squares Estimation |
|
|
206 | (1) |
|
|
207 | (1) |
|
17.2.4 Linear Expenditure Systems |
|
|
208 | (2) |
|
|
210 | (1) |
|
17.3 Distribution-Free Maximum Likelihood Estimation |
|
|
210 | (2) |
|
17.3.1 The Single Equation Case |
|
|
210 | (1) |
|
17.3.2 Interdependent Systems |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (2) |
|
18 Structural Indicators Galore |
|
|
215 | (12) |
|
18.1 Spatial Discount Functions |
|
|
215 | (5) |
|
18.1.1 The Tanner Function |
|
|
215 | (2) |
|
18.1.2 The Ancot-Paelinck Function |
|
|
217 | (1) |
|
18.1.3 The Continuous Poisson Function |
|
|
217 | (1) |
|
18.1.4 The Lognormal Function |
|
|
218 | (1) |
|
18.1.5 The Loglogistic Function |
|
|
219 | (1) |
|
|
219 | (1) |
|
18.2 Dispersion Coefficients |
|
|
220 | (5) |
|
|
221 | (1) |
|
18.2.2 Theil's U Coefficient Generalized |
|
|
222 | (1) |
|
|
223 | (1) |
|
18.2.4 Correlation Analysis |
|
|
224 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
225 | (2) |
|
19 Traveling with the Salesman |
|
|
227 | (10) |
|
19.1 The Traveling Salesman Problem |
|
|
227 | (4) |
|
19.2 The Matrix Permutation Problem |
|
|
231 | (1) |
|
19.3 The Koopmans-Beckmann Problem |
|
|
232 | (1) |
|
19.4 Dynamic Cluster Analysis |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
235 | (2) |
|
20 Complexer and Complexer, Said Alice |
|
|
237 | (18) |
|
|
237 | (4) |
|
20.2 A Topography of Complexes |
|
|
241 | (7) |
|
20.2.1 Circumscribing Clusters |
|
|
241 | (1) |
|
|
241 | (1) |
|
20.2.1.2 Supporting Mathematics |
|
|
242 | (4) |
|
20.2.2 Positioning Plants |
|
|
246 | (2) |
|
20.3 Metropolitan Complexes |
|
|
248 | (5) |
|
20.3.1 Statistical Material |
|
|
248 | (1) |
|
20.3.1.1 The 1999 IMPLAN Database |
|
|
248 | (1) |
|
20.3.1.2 Arc View Business Analyst Datasets (Business Analyst 1999) |
|
|
249 | (2) |
|
|
251 | (1) |
|
20.3.2.1 Identifying Complexes |
|
|
251 | (1) |
|
20.3.2.2 An Application to the Washington, DC Metropolitan Region |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
253 | (2) |
|
21 General Conclusions About Spatial Econometrics |
|
|
255 | (4) |
|
|
256 | (1) |
|
21.2 Parameter Relativity |
|
|
257 | (1) |
|
|
257 | (2) |
Epilogue |
|
259 | (1) |
References |
|
260 | (1) |
Author Index |
|
261 | (4) |
Subject Index |
|
265 | |