|
|
1 | (6) |
|
|
7 | (6) |
|
2.1 LP, Cα, BMO, LP.λ, LPW.λ |
|
|
7 | (1) |
|
2.2 The Campanato scale Lp.λ, Lp.λ (Q0) |
|
|
8 | (2) |
|
2.3 Sobolev Spaces Wmp (Ω,), Gα(LP), Iα(LP) |
|
|
10 | (1) |
|
2.4 Morrey-Sobolev Spaces Iα(LPλ) |
|
|
10 | (1) |
|
2.5 Dense/non-dense subspaces, Zorko Spaces, VLpλ, VMO |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (8) |
|
3.1 Set functions Λd, ΛHd, Ln, 0 < d ≤ n |
|
|
13 | (1) |
|
3.2 Dyadic versions: Λd, Λd0 |
|
|
14 | (1) |
|
|
15 | (1) |
|
3.4 Strong subadditivity of Λd0 and Λd ~ Λd0 |
|
|
16 | (1) |
|
3.5 The operator Mα and Hausdorff capacity |
|
|
16 | (1) |
|
|
17 | (4) |
|
3.6.1 Netrusov's capacity Λd;θ and a Netrusov-Frostman Theorem |
|
|
17 | (1) |
|
3.6.2 A strong type estimate for Mα |
|
|
18 | (3) |
|
|
21 | (8) |
|
4.1 Definition and basic properties: sublinear vs. strong subadditivity |
|
|
21 | (3) |
|
4.2 Adams-Orobitg-Verdera Theorem |
|
|
24 | (2) |
|
|
26 | (3) |
|
4.3.1 Further estimates for Mრ|
|
|
26 | (1) |
|
4.3.2 Speculations on weighted Hausdorff Capacity |
|
|
27 | (2) |
|
5 Duality for Morrey Spaces |
|
|
29 | (8) |
|
|
29 | (2) |
|
5.2 Three equivalent predual spaces Xpλ, Kpλ, Zpλ |
|
|
31 | (2) |
|
|
33 | (2) |
|
5.4 The space Z0pλ and Zpλ |
|
|
35 | (1) |
|
|
36 | (1) |
|
6 Maximal Operators and Morrey Spaces |
|
|
37 | (6) |
|
6.1 Mo on Lpλ - two proofs |
|
|
37 | (2) |
|
6.2 ||Iα μ||Lpλ ~ ||Mα μ|| Lpλ, ||Iα μ||Hpλ ~ ||Mα μ||Hpλ |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
42 | (1) |
|
7 Potential Operators on Morrey Spaces |
|
|
43 | (8) |
|
7.1 Iα : Lpλ → Lpλ ∩ Lpλ--αp, p = λp/λ--αp, αp < λ Iα : Hpλ → Hpλ ∩ Hpλ+αp' |
|
|
43 | (2) |
|
7.2 Wolff potentials associated with ||Iα μ||Lp' |
|
|
45 | (1) |
|
7.3 Wolff potentials associated with ||Iα μ||Lp'λ, ||Iα μ||Hp'λ |
|
|
46 | (2) |
|
7.4 A "Morrey bridge" to Cα |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
49 | (1) |
|
7.5.2 Iα : L1λ → L1.λw, 1 = λ / (λ -- α), 0 < α < λ |
|
|
50 | (1) |
|
8 Singular Integrals on Morrey Spaces |
|
|
51 | (2) |
|
8.1 T : Lpλ → Lpλ and T : Hpλ → 1 < p < ∞, o < λ < n |
|
|
51 | (2) |
|
9 Morrey-Sobolev capacities |
|
|
53 | (10) |
|
9.1 Definitions and simple properties for Cαp(·) |
|
|
53 | (1) |
|
9.2 Definitions and simple properties for Cα(·; X), X = LPλ or Hpλ |
|
|
54 | (2) |
|
|
56 | (3) |
|
9.4 Cα(B(x, r);Hpλ) and failure of CSI for Cα(·; Lpλ) |
|
|
59 | (1) |
|
|
60 | (3) |
|
9.5.1 Weighted capacity vs. Choquet Integrals |
|
|
60 | (1) |
|
9.5.2 Relations between Cα,p and Cβ,q via Morrey Theory |
|
|
60 | (1) |
|
9.5.3 Speculations and parabolic capacities |
|
|
61 | (2) |
|
10 Traces of Morrey Potentials |
|
|
63 | (8) |
|
10.1 ||Iαƒ||Lq(μ) ≤ c ||ƒ||Lp |
|
|
63 | (2) |
|
10.2 ||Iαƒ||Lq(μ) ≤ c0 ||ƒ||Lpλ |
|
|
65 | (2) |
|
10.3 An Improved Trace Result |
|
|
67 | (1) |
|
|
68 | (3) |
|
11 Interpolation of Morrey Spaces |
|
|
71 | (6) |
|
11.1 Stampacchia-Peetre interpolation; Interpolation via the new duality |
|
|
71 | (4) |
|
11.2 Counterexamples to interpolation with Morrey Spaces in the domain of the operator |
|
|
75 | (1) |
|
11.3 Integrability of Morrey Potentials |
|
|
76 | (1) |
|
12 Commutators of Morrey Potentials |
|
|
77 | (8) |
|
12.1 Some history for the operators [ b, T] and [ b, Iα] |
|
|
77 | (1) |
|
|
78 | (2) |
|
12.3 Traces of Morrey commutators, |b| Ln |
|
|
80 | (5) |
|
|
85 | (4) |
|
13.1 Marcinkiewicz Spaces |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
88 | (1) |
|
14 Morrey-Besov Spaces and Besov Capacity |
|
|
89 | (6) |
|
14.1 Adams-Lewis inequality (Sobolev inequality for Morrey-Besov) |
|
|
89 | (3) |
|
14.2 Besov capacity and the Netrusov capacity |
|
|
92 | (1) |
|
14.3 Notes: CSI for Besov capacities |
|
|
93 | (2) |
|
15 Morrey Potentials and PDE I |
|
|
95 | (8) |
|
|
95 | (6) |
|
|
101 | (2) |
|
15.2.1 The Yamabe Case p = n+2/n-2 |
|
|
101 | (1) |
|
15.2.2 Stationary Navier-Stokes (n = 5) |
|
|
101 | (1) |
|
|
102 | (1) |
|
16 Morrey Potentials and PDE II |
|
|
103 | (8) |
|
16.1 Examples of singular sets for elliptic systems |
|
|
103 | (1) |
|
16.2 Meyers-Elcrat system |
|
|
104 | (4) |
|
|
108 | (3) |
|
|
108 | (1) |
|
16.3.2 Lane-Emden systems |
|
|
109 | (2) |
|
17 Morrey Spaces On Complete Riemannian Manifolds |
|
|
111 | (4) |
|
|
112 | (1) |
|
17.2 A Morrey-Sobolev inequality on Mn with balls having maximal growth and Ric ≥ 0 |
|
|
112 | (2) |
|
17.3 Further embedding and speculations |
|
|
114 | (1) |
Bibliography |
|
115 | (6) |
Index of Symbols |
|
121 | (2) |
Index |
|
123 | |