Muutke küpsiste eelistusi

E-raamat: Motion Control of Functionally Related Systems

  • Formaat - PDF+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is concerned with the development of design techniques for controlling motion of mechanical systems which are employed to execute certain tasks acting collaboratively. The book introduces unified control design procedure for functionally related systems. The controllers for many different tasks in motion control can be successfully designed by applying the proposed simple procedure. The book gives an overview of the control methods appearing in the motion control area and the detailed design procedures for the class of systems that are required to execute certain task together. Tasks can generally be divided in their components, denoted as functions in the book. It is shown how dynamics of those tasks can be described. Based on the presented description, several control methods were discussed. Applicability of the introduced control design approach was demonstrated in subsequent chapters for various tasks.

Preface xi
Authors xiii
Symbols xv
1 Introduction
1(4)
1.1 Motivation
1(1)
1.2 Objectives of the Book
2(3)
2 Methods in Motion Control
5(12)
2.1 General Structure of Control Systems
5(9)
2.1.1 Control Systems without Disturbance Estimation
7(4)
2.1.2 Control Systems with Disturbance Estimation
11(3)
2.2 Control of Functionally Related Systems
14(2)
2.3 Conclusion
16(1)
3 Design of a Motion Control System for Functionally Related Systems
17(30)
3.1 Configuration Space Control
17(3)
3.2 System Dynamics
20(8)
3.2.1 Dynamics for Non-Redundant Task
20(3)
3.2.2 Conventional and Proposed Method for Control Mapping
23(2)
3.2.3 Dynamics for Redundant Task
25(3)
3.3 Dynamics of System with Tasks in Hierarchical Structure
28(3)
3.4 Relationship between Constraints and Tasks
31(6)
3.5 Control Synthesis
37(8)
3.5.1 Synthesis Based on Desired Configuration in the Configuration Space
37(1)
3.5.2 Synthesis in the Function Space
38(1)
3.5.2.1 Control Synthesis Based on Disturbance Estimation
38(1)
3.5.2.2 Control Synthesis Based on Sliding Mode Control
39(1)
3.5.2.3 Control Synthesis Based on Equivalent Control Estimation
40(1)
3.5.2.4 Mapping of Control Vector from Function Space to Configuration Space
41(1)
3.5.3 Control of System with Multiple Tasks
42(1)
3.5.4 Control of System with Constraints and Tasks
43(1)
3.5.5 Important Remarks about Control Synthesis
44(1)
3.6 Conclusion
45(2)
4 Functions in Motion Control Systems
47(8)
4.1 Selection of Function Vector and Selection of Function Vector Reference
47(4)
4.2 Closed-Loop Dynamics in Configuration Space
51(2)
4.3 Zero Dynamics
53(1)
4.4 Conclusion
54(1)
5 Motion Synchronization and Object Manipulation in 2-D Space
55(22)
5.1 Experimental Setup
55(1)
5.2 Direct Kinematics of Pantograph Manipulator
56(3)
5.3 Dynamic Model of Pantograph Manipulator
59(1)
5.4 Motion Synchronization Task in 2-D Space
60(4)
5.5 Object Manipulation Task in 2-D Space
64(9)
5.6 Conclusion
73(4)
6 Formation Control
77(20)
6.1 Low-Level Control Design
77(3)
6.2 High-Level Control Design
80(3)
6.3 Simulation Results
83(12)
6.3.1 Pentagon Formation
83(6)
6.3.2 Square Formation
89(6)
6.4 Conclusion
95(2)
7 A New Driving Principle for Piezoelectric Walkers
97(22)
7.1 Motor Description
98(4)
7.2 Waveforms Definition based on Functions
102(8)
7.2.1 Mathematical Definition
103(1)
7.2.2 Motor Constraints
104(2)
7.2.3 One Example for the Definition of Desired Motion of the Motor Legs
106(2)
7.2.4 Differences Between the Proposed Method and Existing Solutions
108(2)
7.3 Control Method
110(3)
7.4 Experimental Results
113(3)
7.5 Generalization of the Presented Approach
116(1)
7.6 Conclusion
117(2)
8 Illustrative Simulation Examples
119(44)
8.1 Tasks Involving Planar Manipulators
119(16)
8.1.1 Direct Kinematics and Dynamic Model of Planar Manipulator
119(2)
8.1.2 Motion Synchronization Task in 2-D Space
121(4)
8.1.3 Object Manipulation Task in 2-D Space
125(10)
8.2 Bilateral System
135(8)
8.3 Task Involving Elbow Manipulators
143(19)
8.3.1 Direct Kinematics and Dynamic Model of Elbow Manipulator
146(2)
8.3.2 Object Manipulation Task in 3-D Space
148(14)
8.4 Conclusion
162(1)
9 Conclusion
163(2)
Bibliography 165(8)
Index 173
Tarik Uzunovi is an Assistant Professor with the Department of Automatic Control and Electronics, Faculty of Electrical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina. His research interests include motion control, robotics, and mechatronics.

Asif abanovi, Emeritus Professor and a member of Academy of Sciences and Arts of Bosnia and Herzegovina, was a Visiting Researcher with the Institute of Control Sciences, Moscow, Russia, Visiting Professor with the California Institute of Technology - CALTECH, Pasadena, Hitachi Chair Professor with Keio University, Yokohama, Japan, Full Professor with Yamaguchi University, Ube, Japan, Head of CAD/CAM and Robotics Department at Tubitak - Marmara Research Centre, Istanbul.