Muutke küpsiste eelistusi

E-raamat: Motion-Induced Eddy Current Techniques for Non-Destructive Testing and Evaluation

, (Kompass), (Technische Universität Ilmenau, Advanced Electromagnetics Group, Germany), (Technische Universität Ilmenau, Advanced Electromagnetics Group, Germany), (Technische Universität Ilmenau, Advanced Electromagnetics Group, Germany),
  • Formaat: EPUB+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 29-Nov-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785612169
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 208,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 29-Nov-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785612169
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Non-destructive testing (NDT) analysis techniques are used in science, technology and medicine to evaluate the properties of a material, component or system, without causing damage or altering the article being inspected. It is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. Well known and widely used in industrial applications since the 60s, the NDT market is developing and growing very fast.

This book focuses on electromagnetic NDT methods and more specifically on the motion-induced eddy current testing and evaluation (MIECTE) techniques used for conductive materials via electromagnetic methods, focusing on the Lorentz force eddy current testing (LET) method which has been introduced recently. The authors present the modelling and simulation of LET systems as well as the optimal design of the measurement setups. They also show the wide variety of possible applications of the LET method including defect identification and sigmometry to estimate electrical conductivity of the tested material.

Ideal material to use when training sensing and material engineers, professionals, developers and scientists on Non Destructive Testing (NDT), evaluation (NDE) and applications. This book is also for manufacturers of conductive (non-magnetic) materials and devices which have to proof defect-free products and inspection departments in companies manufacturing metallic rolling products such as sheet steel, rods and tubular goods. Students, researchers and lecturers at universities and research institutes with NDT courses in electrical engineering, sensing, robotics, mechatronics, mechanical engineering, fluid dynamics, material science and composite materials will also find this book useful.



This book focuses on electromagnetic NDT methods and more specifically on the motion-induced eddy current testing and evaluation (MIECTE) techniques used for conductive materials via electromagnetic methods, focusing on the Lorentz force eddy current testing (LET) method which has been introduced recently.

Author Biographies ix
Preface xiii
1 Introduction
1(46)
Hartmut Brauer
1.1 Electromagnetic testing
9(9)
1.1.1 Brief historical review
10(1)
1.1.2 Electromagnetic NDT methods
11(3)
1.1.3 Capabilities of electromagnetic techniques
14(1)
1.1.4 Present state of eddy current inspection
15(3)
1.2 Eddy current testing
18(17)
1.2.1 Eddy current and ECT
18(1)
1.2.2 ECT principles
19(15)
1.2.3 Applications
34(1)
1.3 Motion-induced ECT
35(12)
1.3.1 Introduction
35(1)
1.3.2 Lorentz force eddy current testing
36(2)
1.3.3 Theory
38(1)
1.3.4 Experiments
39(4)
1.3.5 Comparison of ECT and LET
43(4)
2 Forward simulation methods
47(90)
Marek Ziolkowski
Mladen Zee
Konstantin Weise
2.1 Moving coordinate systems---transformations
48(3)
2.2 Semianalytical methods used in LET systems
51(59)
2.2.1 Calculation of forces in 2D LET systems
51(11)
2.2.2 Lorentz forces acting on 3D permanent magnets above moving conducting plate without defects
62(8)
2.2.3 Calculation of forces in 3D LET systems
70(5)
2.2.4 Oscillatory motion of permanent magnets above a conducting plate
75(25)
2.2.5 The simplest approach to calculate DRS
100(3)
2.2.6 A hole in a thin, large, conductive sheet
103(2)
2.2.7 An extended area approach in the calculation of DRS
105(5)
2.3 Surface charge simulation method
110(6)
2.4 Numerical simulations with FEM
116(21)
2.4.1 Introduction and motivation
116(1)
2.4.2 Computation of eddy current distributions including moving parts
117(3)
2.4.3 Numerical modeling of conductivity anomalies
120(9)
2.4.4 Comparison of numerical approaches
129(8)
3 Sensors for MIECT
137(38)
Matthias Carlstedt
Hartmut Brauer
Konstantin Weise
3.1 Force measurement systems
137(10)
3.1.1 Principles of force transducers
137(4)
3.1.2 Differential Lorentz force eddy current testing sensor
141(5)
3.1.3 Characteristics and calibration of force measurement systems
146(1)
3.2 Optimization of PM systems
147(28)
3.2.1 Introduction and motivation
147(1)
3.2.2 Methods
147(15)
3.2.3 Optimization results and discussion
162(6)
3.2.4 Prototypes of optimized LET magnet systems
168(3)
3.2.5 Defect depth study
171(2)
3.2.6 Conclusions
173(2)
4 Experiments and LET measurements
175(52)
Matthias Carlstedt
Konstantin Weise
4.1 Measurement procedure
175(11)
4.1.1 Measurement principle
176(1)
4.1.2 Measurement method
176(3)
4.1.3 Experimental setup
179(7)
4.2 Validation procedure
186(41)
4.2.1 DSP and basic statistics
186(4)
4.2.2 Autocorrelation on typical force signals
190(2)
4.2.3 Program flowchart for DSP
192(6)
4.2.4 Experimental study
198(6)
4.2.5 Uncertainty analysis
204(23)
5 Lorentz force evaluation
227(16)
Hartmut Brauer
5.1 Identification of conductivity anomalies
227(2)
5.2 Inverse solution techniques
229(7)
5.2.1 Theory
229(1)
5.2.2 Classification of inverse problems
230(5)
5.2.3 Regularization
235(1)
5.3 Lorentz force evaluation
236(6)
5.4 Summary
242(1)
6 Applications
243(64)
Robert P. Uhlig
Hartmut Brauer
Konstantin Weise
Marek Ziolkowski
6.1 Sigmometry
243(12)
6.1.1 Introduction and motivation
243(1)
6.1.2 Basic principle
244(2)
6.1.3 Semianalytical and numerical calibration
246(2)
6.1.4 Experimental validation
248(6)
6.1.5 Findings
254(1)
6.2 Defectocscopy ofmultilayered structures
255(10)
6.2.1 LET measurements of alucobond specimen
255(1)
6.2.2 Forward simulations
256(3)
6.2.3 Defect identification
259(2)
6.2.4 Results and discussion
261(4)
6.3 Inspection of composites
265(25)
6.3.1 Composite material
265(2)
6.3.2 Glass laminate aluminum reinforced epoxy (GLARE)
267(13)
6.3.3 Carbon fiber reinforced polymer (CFRP)
280(10)
6.4 Defectoscopy of friction stir welding
290(13)
6.4.1 Friction stir welding (FSW)
290(4)
6.4.2 FSW experiments
294(1)
6.4.3 NDT of friction stir welds
295(3)
6.4.4 MIECT measurements of friction stir welds
298(4)
6.4.5 Potential applications of MIECT
302(1)
6.5 Application to ferromagnetic materials
303(4)
References 307(30)
Index 337