|
|
1 | (60) |
|
|
1 | (1) |
|
1.2 Related Works of Robot Locomotion |
|
|
2 | (26) |
|
1.2.1 Quadruped Locomotion |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (19) |
|
|
28 | (25) |
|
1.3.1 Foundation of Neural Network |
|
|
28 | (6) |
|
1.3.2 Recurrent Neural Network |
|
|
34 | (4) |
|
1.3.3 Feed-forward Neural Network |
|
|
38 | (7) |
|
1.3.4 Cerebellar Model Arithmetic Computer (CMAC) |
|
|
45 | (1) |
|
1.3.5 Fuzzy Neural Network |
|
|
46 | (4) |
|
|
50 | (2) |
|
1.3.7 Central Pattern Generator |
|
|
52 | (1) |
|
1.4 Multi-Locomotion Robot |
|
|
53 | (5) |
|
|
53 | (1) |
|
1.4.2 Diversity of Locomotion in Animals |
|
|
54 | (1) |
|
1.4.3 Multi-Locomotion Robot |
|
|
55 | (3) |
|
1.5 Organization of This Book |
|
|
58 | (3) |
|
|
61 | (14) |
|
2.1 Trajectory Generation Method of Robots |
|
|
61 | (2) |
|
2.1.1 Generation of a Desired Trajectory |
|
|
61 | (1) |
|
2.1.2 Basic Orbital Function |
|
|
62 | (1) |
|
2.1.3 Design of Basic Orbital Function Using n-Dimensional Polynomial |
|
|
62 | (1) |
|
|
63 | (2) |
|
2.3 Passive Dynamic Autonomous Control (PDAC) |
|
|
65 | (10) |
|
|
65 | (5) |
|
|
70 | (1) |
|
|
71 | (4) |
|
3 Hardware of Multi-Locomotion Robot |
|
|
75 | (8) |
|
3.1 Brachiation Robot (Conventional Bio-inspired Robot) |
|
|
75 | (1) |
|
3.2 Gorilla Robot (Multi-Locomotion Robot) |
|
|
76 | (4) |
|
|
77 | (2) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (3) |
|
|
83 | (34) |
|
|
83 | (1) |
|
4.2 Learning Algorithm for a Gorilla Robot Brachiation |
|
|
84 | (11) |
|
|
84 | (4) |
|
|
88 | (6) |
|
4.2.3 Summary of This Section |
|
|
94 | (1) |
|
4.3 Continuous Brachiation Using the Gorilla Robot |
|
|
95 | (11) |
|
4.3.1 Smooth, Continuous Brachiation |
|
|
95 | (2) |
|
|
97 | (4) |
|
|
101 | (5) |
|
4.3.4 Summary of This Section |
|
|
106 | (1) |
|
4.4 Continuous Brachiation on the Irregular Ladder |
|
|
106 | (10) |
|
4.4.1 Motion Design of the Brachiation |
|
|
106 | (2) |
|
|
108 | (3) |
|
|
111 | (3) |
|
|
114 | (2) |
|
4.4.5 Summary of This Section |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
117 | (22) |
|
5.1 Realization of a Crawl Gait |
|
|
117 | (10) |
|
5.1.1 Motion Design of a Crawl Gait |
|
|
117 | (3) |
|
5.1.2 Joint Trajectory of the Leg |
|
|
120 | (2) |
|
5.1.3 Estimation of Walking Energy |
|
|
122 | (2) |
|
|
124 | (3) |
|
5.2 Joint Torque Evaluation of the Gorilla Robot on Slopes as Quadruped Hardware |
|
|
127 | (10) |
|
5.2.1 Structure of Gorilla Robot III |
|
|
127 | (1) |
|
|
127 | (2) |
|
5.2.3 Evaluation of Joint Torque in Quadruped Walk on a Slope |
|
|
129 | (3) |
|
5.2.4 Simulation Analysis |
|
|
132 | (3) |
|
|
135 | (2) |
|
|
137 | (2) |
|
|
139 | (14) |
|
6.1 Model of Ladder Climbing |
|
|
139 | (6) |
|
|
139 | (1) |
|
6.1.2 Ladder Climbing Gait |
|
|
140 | (1) |
|
6.1.3 Body Yawing Momentum |
|
|
141 | (3) |
|
6.1.4 Error Recognition and Escape Motion |
|
|
144 | (1) |
|
|
145 | (5) |
|
|
146 | (2) |
|
6.2.2 Pace Gait with Constant Velocity |
|
|
148 | (1) |
|
6.2.3 Trot Gait with Acceleration |
|
|
148 | (2) |
|
|
150 | (3) |
|
7 Transition Motion from Ladder Climbing to Brachiation |
|
|
153 | (20) |
|
|
153 | (3) |
|
7.1.1 Environment Statement |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
7.2 Contact Forces Formulation |
|
|
156 | (2) |
|
7.2.1 Assumptions and Equilibrium Equations |
|
|
156 | (1) |
|
7.2.2 Supporting Forces Decomposition |
|
|
157 | (1) |
|
7.2.3 Brief Summary and Problem Statement |
|
|
158 | (1) |
|
7.3 Load-Allocation Control |
|
|
158 | (7) |
|
7.3.1 Concept of Load-Allocation Control |
|
|
158 | (1) |
|
7.3.2 Objective Function and Constraints |
|
|
159 | (2) |
|
7.3.3 Generation of Optimized Supporting Forces |
|
|
161 | (1) |
|
7.3.4 Load-Allocation Algorithm |
|
|
162 | (3) |
|
7.4 Eexperiment Results and Discussion |
|
|
165 | (6) |
|
7.4.1 Validating the Assumptions and Load-Allocation Ability |
|
|
166 | (2) |
|
7.4.2 Discussion of Failures with Position Control |
|
|
168 | (1) |
|
7.4.3 Experiment Results with Load-Allocation Control |
|
|
169 | (2) |
|
|
171 | (2) |
|
8 Locomotion Transition Based on Walking Stabilization Norm Using Bayesian Network |
|
|
173 | (14) |
|
|
173 | (1) |
|
8.2 Sensor System and Locomotion Mode |
|
|
173 | (2) |
|
8.3 Locomotion Stabilization |
|
|
175 | (1) |
|
8.4 Stabilization Based on External Information |
|
|
176 | (1) |
|
8.4.1 Recognition of Ground |
|
|
176 | (1) |
|
8.5 Stabilization Based on Internal Conditions |
|
|
177 | (3) |
|
8.5.1 Estimation of Probability |
|
|
177 | (2) |
|
8.5.2 Consideration of Stability Margin |
|
|
179 | (1) |
|
8.5.3 Shift of Locomotion Mode |
|
|
179 | (1) |
|
|
180 | (5) |
|
8.6.1 Experimental Conditions |
|
|
180 | (1) |
|
8.6.2 Experimental Result |
|
|
180 | (5) |
|
|
185 | (2) |
|
9 Application of the Passive Dynamic Autonomous Control (PDAC) |
|
|
187 | (104) |
|
9.1 Lateral Motion Control with PDAC |
|
|
187 | (13) |
|
9.1.1 Lateral Motion and Dynamics |
|
|
187 | (5) |
|
9.1.2 Control of Lateral Period |
|
|
192 | (1) |
|
|
193 | (2) |
|
9.1.4 Experimental Results |
|
|
195 | (3) |
|
9.1.5 Summary of This Section |
|
|
198 | (2) |
|
9.2 Sagittal Motion Control with PDAC |
|
|
200 | (15) |
|
9.2.1 Sagittal Motion and Dynamics |
|
|
201 | (3) |
|
|
204 | (5) |
|
9.2.3 Sagittal Motion Period |
|
|
209 | (1) |
|
9.2.4 Quick Convergency Method |
|
|
210 | (1) |
|
|
210 | (2) |
|
|
212 | (1) |
|
9.2.7 Upper Layer Controller |
|
|
213 | (1) |
|
9.2.8 Summary of This Section |
|
|
214 | (1) |
|
9.3 Heel-off Walking Control with PDAC |
|
|
215 | (13) |
|
9.3.1 Sagittal Motion Design |
|
|
216 | (3) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (6) |
|
9.3.6 Summary of This Section |
|
|
227 | (1) |
|
9.4 3-D Biped Walking Based on 3-D Dynamics with PDAC |
|
|
228 | (28) |
|
|
228 | (7) |
|
|
235 | (4) |
|
|
239 | (13) |
|
|
252 | (1) |
|
|
252 | (4) |
|
9.4.6 Summary of This Section |
|
|
256 | (1) |
|
9.5 3-D Biped Walking Adapted to Rough Terrain Environment |
|
|
256 | (10) |
|
|
256 | (2) |
|
|
258 | (3) |
|
|
261 | (5) |
|
9.5.4 Summary of This Section |
|
|
266 | (1) |
|
9.6 Quadruped Walking with PDAC |
|
|
266 | (12) |
|
9.6.1 Lateral Motion Control |
|
|
266 | (1) |
|
9.6.2 Design of Pendulum Length |
|
|
267 | (3) |
|
9.6.3 Sagittal Motion Control |
|
|
270 | (2) |
|
9.6.4 Estimation of Walking Energy |
|
|
272 | (4) |
|
|
276 | (1) |
|
9.6.6 Summary of Quadruped Walking Control |
|
|
277 | (1) |
|
9.7 Brachiation with PDAC |
|
|
278 | (12) |
|
9.7.1 Brachiation Controller with PDAC |
|
|
278 | (1) |
|
9.7.2 Analysis of the Robot Dynamics |
|
|
279 | (6) |
|
|
285 | (5) |
|
9.7.4 Summary of Brachiation Control |
|
|
290 | (1) |
|
|
290 | (1) |
|
|
291 | (6) |
|
|
291 | (3) |
|
|
294 | (3) |
References |
|
297 | |