Muutke küpsiste eelistusi

E-raamat: Multi-Locomotion Robotic Systems: New Concepts of Bio-inspired Robotics

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields
including these types of researches.
The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.

The material covered here is at the frontiers of robot technology, inspired by the complex movement of animals. It includes Passive Dynamic Autonomous Control (PDAC), robot motion control, multi-legged walking and climbing as well as brachiation.

Arvustused

From the reviews:

The present book describes robotic locomotion systems, such as multi-legged locomotion, brachiation, hopping, and snake locomotion. The intended audience for this book consists of control scientists and control engineers as well as graduate and PhD students in the area of robotics and mechatronics. (Clementina Mladenova, Zentralblatt MATH, Vol. 1260, 2013)

1 Introduction
1(60)
1.1 Robot Locomotion
1(1)
1.2 Related Works of Robot Locomotion
2(26)
1.2.1 Quadruped Locomotion
2(3)
1.2.2 Hexapod Locomotion
5(1)
1.2.3 Hopping
6(1)
1.2.4 Brachiation
7(1)
1.2.5 Snake Locomotion
8(1)
1.2.6 Biped Locomotion
9(19)
1.3 Bio-inspired System
28(25)
1.3.1 Foundation of Neural Network
28(6)
1.3.2 Recurrent Neural Network
34(4)
1.3.3 Feed-forward Neural Network
38(7)
1.3.4 Cerebellar Model Arithmetic Computer (CMAC)
45(1)
1.3.5 Fuzzy Neural Network
46(4)
1.3.6 Genetic Algorithms
50(2)
1.3.7 Central Pattern Generator
52(1)
1.4 Multi-Locomotion Robot
53(5)
1.4.1 Bio-inspired Robot
53(1)
1.4.2 Diversity of Locomotion in Animals
54(1)
1.4.3 Multi-Locomotion Robot
55(3)
1.5 Organization of This Book
58(3)
2 Basics
61(14)
2.1 Trajectory Generation Method of Robots
61(2)
2.1.1 Generation of a Desired Trajectory
61(1)
2.1.2 Basic Orbital Function
62(1)
2.1.3 Design of Basic Orbital Function Using n-Dimensional Polynomial
62(1)
2.2 Limit Cycle
63(2)
2.3 Passive Dynamic Autonomous Control (PDAC)
65(10)
2.3.1 Dynamics of PDAC
65(5)
2.3.2 Control System
70(1)
2.3.3 Advantage of PDAC
71(4)
3 Hardware of Multi-Locomotion Robot
75(8)
3.1 Brachiation Robot (Conventional Bio-inspired Robot)
75(1)
3.2 Gorilla Robot (Multi-Locomotion Robot)
76(4)
3.2.1 Gorilla Robot I
77(2)
3.2.2 Gorilla Robot II
79(1)
3.2.3 Gorilla Robot III
80(1)
3.3 Summary
80(3)
4 Brachiation
83(34)
4.1 What Is Brachiation?
83(1)
4.2 Learning Algorithm for a Gorilla Robot Brachiation
84(11)
4.2.1 Motion Learning
84(4)
4.2.2 Experiment
88(6)
4.2.3 Summary of This Section
94(1)
4.3 Continuous Brachiation Using the Gorilla Robot
95(11)
4.3.1 Smooth, Continuous Brachiation
95(2)
4.3.2 Controller Design
97(4)
4.3.3 Experiment
101(5)
4.3.4 Summary of This Section
106(1)
4.4 Continuous Brachiation on the Irregular Ladder
106(10)
4.4.1 Motion Design of the Brachiation
106(2)
4.4.2 Locomotion Action
108(3)
4.4.3 Swing Action
111(3)
4.4.4 Experiment
114(2)
4.4.5 Summary of This Section
116(1)
4.5 Summary
116(1)
5 Quadruped Walking
117(22)
5.1 Realization of a Crawl Gait
117(10)
5.1.1 Motion Design of a Crawl Gait
117(3)
5.1.2 Joint Trajectory of the Leg
120(2)
5.1.3 Estimation of Walking Energy
122(2)
5.1.4 Experiment
124(3)
5.2 Joint Torque Evaluation of the Gorilla Robot on Slopes as Quadruped Hardware
127(10)
5.2.1 Structure of Gorilla Robot III
127(1)
5.2.2 Basic Gait Pattern
127(2)
5.2.3 Evaluation of Joint Torque in Quadruped Walk on a Slope
129(3)
5.2.4 Simulation Analysis
132(3)
5.2.5 Experiment
135(2)
5.3 Summary
137(2)
6 Ladder Climbing Motion
139(14)
6.1 Model of Ladder Climbing
139(6)
6.1.1 Basic Motion Model
139(1)
6.1.2 Ladder Climbing Gait
140(1)
6.1.3 Body Yawing Momentum
141(3)
6.1.4 Error Recognition and Escape Motion
144(1)
6.2 Experiment
145(5)
6.2.1 Transverse Gait
146(2)
6.2.2 Pace Gait with Constant Velocity
148(1)
6.2.3 Trot Gait with Acceleration
148(2)
6.3 Summary
150(3)
7 Transition Motion from Ladder Climbing to Brachiation
153(20)
7.1 Motion Design
153(3)
7.1.1 Environment Statement
153(1)
7.1.2 Motion Planning
154(1)
7.1.3 Transition Motion
155(1)
7.2 Contact Forces Formulation
156(2)
7.2.1 Assumptions and Equilibrium Equations
156(1)
7.2.2 Supporting Forces Decomposition
157(1)
7.2.3 Brief Summary and Problem Statement
158(1)
7.3 Load-Allocation Control
158(7)
7.3.1 Concept of Load-Allocation Control
158(1)
7.3.2 Objective Function and Constraints
159(2)
7.3.3 Generation of Optimized Supporting Forces
161(1)
7.3.4 Load-Allocation Algorithm
162(3)
7.4 Eexperiment Results and Discussion
165(6)
7.4.1 Validating the Assumptions and Load-Allocation Ability
166(2)
7.4.2 Discussion of Failures with Position Control
168(1)
7.4.3 Experiment Results with Load-Allocation Control
169(2)
7.5 Summary
171(2)
8 Locomotion Transition Based on Walking Stabilization Norm Using Bayesian Network
173(14)
8.1 Introduction
173(1)
8.2 Sensor System and Locomotion Mode
173(2)
8.3 Locomotion Stabilization
175(1)
8.4 Stabilization Based on External Information
176(1)
8.4.1 Recognition of Ground
176(1)
8.5 Stabilization Based on Internal Conditions
177(3)
8.5.1 Estimation of Probability
177(2)
8.5.2 Consideration of Stability Margin
179(1)
8.5.3 Shift of Locomotion Mode
179(1)
8.6 Experiments
180(5)
8.6.1 Experimental Conditions
180(1)
8.6.2 Experimental Result
180(5)
8.7 Summary
185(2)
9 Application of the Passive Dynamic Autonomous Control (PDAC)
187(104)
9.1 Lateral Motion Control with PDAC
187(13)
9.1.1 Lateral Motion and Dynamics
187(5)
9.1.2 Control of Lateral Period
192(1)
9.1.3 Stabilization
193(2)
9.1.4 Experimental Results
195(3)
9.1.5 Summary of This Section
198(2)
9.2 Sagittal Motion Control with PDAC
200(15)
9.2.1 Sagittal Motion and Dynamics
201(3)
9.2.2 Stabilization
204(5)
9.2.3 Sagittal Motion Period
209(1)
9.2.4 Quick Convergency Method
210(1)
9.2.5 Simulation
210(2)
9.2.6 Experiment
212(1)
9.2.7 Upper Layer Controller
213(1)
9.2.8 Summary of This Section
214(1)
9.3 Heel-off Walking Control with PDAC
215(13)
9.3.1 Sagittal Motion Design
216(3)
9.3.2 Converged Dynamics
219(1)
9.3.3 Stabilization
220(1)
9.3.4 Foot-Contact
221(1)
9.3.5 Simulation
221(6)
9.3.6 Summary of This Section
227(1)
9.4 3-D Biped Walking Based on 3-D Dynamics with PDAC
228(28)
9.4.1 Walking Model
228(7)
9.4.2 Foot-Contact Model
235(4)
9.4.3 Stabilization
239(13)
9.4.4 Experiment
252(1)
9.4.5 Simulation
252(4)
9.4.6 Summary of This Section
256(1)
9.5 3-D Biped Walking Adapted to Rough Terrain Environment
256(10)
9.5.1 Foot-Contact Model
256(2)
9.5.2 Stability Analysis
258(3)
9.5.3 Experiment
261(5)
9.5.4 Summary of This Section
266(1)
9.6 Quadruped Walking with PDAC
266(12)
9.6.1 Lateral Motion Control
266(1)
9.6.2 Design of Pendulum Length
267(3)
9.6.3 Sagittal Motion Control
270(2)
9.6.4 Estimation of Walking Energy
272(4)
9.6.5 Experiment
276(1)
9.6.6 Summary of Quadruped Walking Control
277(1)
9.7 Brachiation with PDAC
278(12)
9.7.1 Brachiation Controller with PDAC
278(1)
9.7.2 Analysis of the Robot Dynamics
279(6)
9.7.3 Experiment
285(5)
9.7.4 Summary of Brachiation Control
290(1)
9.8 Summary
290(1)
10 Conclusion
291(6)
10.1 Summary
291(3)
10.2 Future Perspective
294(3)
References 297