Muutke küpsiste eelistusi

E-raamat: Multi-scale Analysis for Random Quantum Systems with Interaction

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction  presents the progress that had been recently achieved in this area.

 

The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd.

 

This book includes the following cutting-edge features:

 

an introduction to the state-of-the-art single-particle localization theory

an extensive discussion of relevant technical aspects of the localization theory

a thorough comparison of the multi-particle model with its single-particle counterpart

a self-contained rigorous derivation of both spectral and dynamical localization in the multi-particle tight-binding Anderson model.

 

Required mathematical background for the book includes a knowledge of functional calculus, spectral theory (essentially reduced to the case of finite matrices) and basic probability theory. This is an excellent text for a year-long graduate course or seminar in mathematical physics. It also can serve as a standard reference for specialists.
Part I Single-Particle Localization
1 A Brief History of Anderson Localization
3(24)
1.1 Anderson Localization in Theoretical Physics
3(2)
1.2 Localization in an IID External Potential
5(3)
1.3 Localization Versus Delocalization in a Quasiperiodic External Potential
8(10)
1.4 Spectral and Dynamical Manifestations of Anderson Localization
18(2)
1.4.1 Spectral Localization
18(1)
1.4.2 Dynamical Localization
18(2)
1.5 The N-Particle Model in a Random Environment
20(7)
1.5.1 The Hamiltonian of the N-Particle System in Zd
21(2)
1.5.2 The Two-Particle Case
23(1)
1.5.3 Systems of Positive Spatial Densities
24(3)
2 Single-Particle MSA Techniques
27(110)
2.1 An Initiation into the Single-Particle MSA
28(15)
2.1.1 Technical Requisites
28(4)
2.1.2 The MSA Induction
32(1)
2.1.3 Fixed-Energy and Variable-Energy MSA: Informal Discussion
33(1)
2.1.4 Fixed-Energy MSA
34(3)
2.1.5 Variable-Energy MSA
37(2)
2.1.6 Single-Particle Localization Results
39(4)
2.2 Eigenvalue Concentration Bounds
43(12)
2.2.1 Wegner's Bounds
43(1)
2.2.2 Stollmann's Product-Measure Lemma
44(3)
2.2.3 Stollmann's EVC Bound
47(3)
2.2.4 The Density of States and Higher-Order EVC Bounds
50(5)
2.3 Decay of the Green's Functions, I
55(20)
2.3.1 The Geometric Resolvent Identities
55(2)
2.3.2 Decay of the Green's Functions in Typical Cubes
57(5)
2.3.3 The Combes-Thomas Estimates
62(2)
2.3.4 Proof of the Combes-Thomas Estimates
64(4)
2.3.5 Applications of the Combes-Thomas Estimate to the MSA
68(7)
2.4 Decay of the Green's Functions, II: Fixed-Energy Analysis
75(10)
2.4.1 Lattice Subharmonicity
75(3)
2.4.2 Tunneling and Decay of Green's Functions
78(2)
2.4.3 Probability of Tunneling and Scale Induction
80(3)
2.4.4 Absence of A.C. Spectrum
83(2)
2.5 From Fixed-Energy to Variable-Energy Analysis
85(15)
2.5.1 Eigenfunction Correlators in a Bounded Energy Interval
85(3)
2.5.2 Dynamical Localization Bounds in Finite Volumes
88(2)
2.5.3 Adaptation to Unbounded Energy Intervals
90(4)
2.5.4 Extending the Bounds to the Entire Lattice
94(3)
2.5.5 Strong Dynamical Localization for a Single Particle
97(3)
2.6 Decay of the Green's Functions, III: Variable-Energy Analysis
100(15)
2.6.1 Sparse Singular Cubes: An Informal Discussion
100(2)
2.6.2 Radial Descent Bounds
102(5)
2.6.3 Subharmonicity of Green's Functions in Moderately Singular Cubes
107(1)
2.6.4 Scaling of the Decay Exponent
108(3)
2.6.5 Multiple Singular Cubes are Unlikely
111(2)
2.6.6 The Inductive Scaling Step
113(2)
2.7 From Green's Functions to Eigenfunctions and Eigenvalues
115(17)
2.7.1 The MSA Bound Implies Exponential Spectral Localization
115(6)
2.7.2 From the MSA Bound to Dynamical Localization
121(8)
2.7.3 Local Statistics of Eigenvalues
129(3)
2.8 The FMM as an Alternative to the MSA
132(5)
Part II Multi-particle Localization
3 Multi-particle Eigenvalue Concentration Bounds
137(34)
3.1 Basic Notation and Assumptions: The Statement of Localization Results
137(15)
3.1.1 The Multi-particle Anderson Hamiltonian
137(6)
3.1.2 Multi-particle Localization Results: MPMSA in a Nutshell
143(6)
3.1.3 EVC Bounds in the Multi-particle MSA
149(3)
3.2 Molchanov's Formula: Carmona's Argument and Its Generalization
152(6)
3.3 Separability of Cubes and EVC Bounds
158(4)
3.4 Multi-particle Stollmann's Bound
162(4)
3.5 Extended Wegner-Type Bounds for Distant Pairs of Cubes
166(5)
4 Multi-particle MSA Techniques
171(58)
4.1 A Remark on Two-Particle Systems
172(1)
4.2 Some Geometric Notions and Facts
173(3)
4.3 Fixed-Energy MPMSA
176(19)
4.3.1 Initial Scale Bounds
177(5)
4.3.2 Tunneling
182(1)
4.3.3 Localization in Decoupled Systems at a Fixed Energy
183(2)
4.3.4 Scale Induction at a Fixed Energy
185(2)
4.3.5 Conclusion of the Fixed-Energy MPMSA
187(1)
4.3.6 From Fixed-Energy MPMSA to Dynamical Localization
187(8)
4.3.7 From Eigenfunction Correlators to Strong Dynamical Localization: Proof of Theorem 3.1.2
195(1)
4.4 Variable-Energy MPMSA
195(15)
4.4.1 Modified (Stronger) Double Singularity Bound
196(1)
4.4.2 Initial Scale Bounds: Variable-Energy Analysis
196(1)
4.4.3 The Inductive Scheme: Variable-Energy Version
197(1)
4.4.4 Localization in Decoupled Systems
197(3)
4.4.5 Analysis of Partially Interactive Pairs
200(5)
4.4.6 Analysis of Fully Interactive Pairs
205(2)
4.4.7 Analysis of Mixed Pairs
207(2)
4.4.8 Conclusion of the Variable-Energy MPMSA
209(1)
4.5 Exponential Localization: From MPMSA to Theorem 3.1.1
210(2)
4.6 Strong Dynamical Localization: From MPMSA to Theorem 3.1.2
212(2)
4.7 Further Progress in Multi-particle Localization Theory
214(15)
4.7.1 Multi-particle Localization at Extreme Energies
214(3)
4.7.2 The Role of Ergodicity and the Integrated Density of States for Multi-particle Systems
217(3)
4.7.3 Correlated Potentials and Infinite-Range Interactions
220(1)
4.7.4 Weak Perturbations of Localized Non-interacting Systems
221(3)
4.7.5 Multi-particle Localization in Euclidean Space
224(2)
4.7.6 Multi-particle Localization in Quantum Graphs
226(3)
References 229(8)
Index 237
Prof Chulaevsky teaches at the Univ. of Riems