Muutke küpsiste eelistusi

E-raamat: Multi-scale Spectral Analysis in Hydrology: From Theory to Practice

(Indian institute of Technology Bombay, Mumbai, India), (TKM College of Engineering Kollam, India)
  • Formaat: 224 pages
  • Ilmumisaeg: 28-Feb-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000346626
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 224 pages
  • Ilmumisaeg: 28-Feb-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000346626

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Accurate prediction of hydrological variables is essential for efficient water resources planning and management. Proper understanding of the characteristics of the time series may help in improving the simulation and forecasting accuracy of hydrological variables. This book presents a detailed description and application of multiscale time-frequency characterization tool for the spectral analysis of hydrological time series. It presents spectral analysis methods for hydrological applications through a wide variety of illustrative case studies including Wavelet transforms, Hilbert Huang Transform and their extensions.

Preface xi
Acknowledgments xiii
About the Authors xv
Chapter 1 Introduction
1(4)
1.1 Background
1(1)
1.2 Scope of Multiscale Spectral Analysis in Hydrology
1(2)
1.3 Organization of the Book Content
3(2)
Chapter 2 The Theory of Advanced Spectral Analysis Methods
5(40)
2.1 Background
5(1)
2.2 Conventional Spectral Analysis Methods
6(2)
2.2.1 Fourier Transform
6(1)
2.2.2 Short-Time Fourier Transform (STFT)
7(1)
2.3 Advanced Spectral Analysis Methods
8(25)
2.3.1 Wavelet Transform
8(2)
2.3.1.1 Theory of Wavelet
10(3)
2.3.1.2 Types of Wavelets and Levels of Decomposition
13(4)
2.3.1.3 Levels of Decomposition
17(1)
2.3.1.4 Cross Wavelet Spectrum
17(1)
2.3.1.5 Wavelet Coherence (WTC)
18(1)
2.3.2 Hilbert-Huang Transform
18(1)
2.3.2.1 Empirical Mode Decomposition
19(1)
2.3.2.2 Ensemble Empirical Mode Decomposition
20(1)
2.3.2.3 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
21(1)
2.3.2.4 Multivariate Empirical Mode Decomposition
22(4)
2.3.2.5 Statistical Significance Test of IMF Components
26(1)
2.3.2.6 Hilbert Transform and Its Normalization-Direct Quadrature Scheme
27(5)
2.3.2.7 Time Dependent Intrinsic Correlation Analysis
32(1)
2.4 MEMD-based Hybrid Frameworks for Hydrological Applications
33(5)
2.4.1 MEMD-TDIC Coupled Framework for Investigating Multiscale Teleconnections
33(1)
2.4.2 MEMD-based Hybrid Scheme for Hydrologic Modeling
34(3)
2.4.3 MEMD-Scaling Theory Coupled Approach for Developing Rainfall Intensity-Duration-Frequency (IDF) Curves
37(1)
2.5 Closure
38(7)
Chapter 3 Wavelet Transform Applications for Hydrological Characterization
45(20)
3.1 Background
45(1)
3.2 DWT Application for Trend Analysis of Rainfall
45(11)
3.2.1 Study Area and Rainfall Characteristics
45(2)
3.2.2 DWT-SQMK Coupled Approach for Trend Analysis
47(9)
3.3 Application of CWT and Wavelet Coherence for Analyzing Streamflow-Sediment Link
56(5)
3.3.1 Study Area and Data Details
56(1)
3.3.2 Wavelet Analysis of Streamflow and TSS Concentration
57(4)
3.4 Closure
61(4)
Chapter 4 Hilbert Huang Transform Applications for Characterization of Rainfall
65(58)
4.1 Background
65(1)
4.2 Study Area and Data
66(1)
4.3 Trend Analysis of Rainfall Using Non-Parametric Tests and HHT
67(6)
4.3.1 Trend Analysis of AISMR and Monsoon Rainfall over Homogeneous Regions
67(1)
4.3.2 Trend Analysis of Rainfall in Kerala Subdivision
68(5)
4.4 Hilbert Huang Transform Analysis of Rainfall Time Series
73(20)
4.4.1 Hilbert Huang Transform Analysis of Monsoon Rainfall over India
73(14)
4.4.2 HHT Analysis of Rainfall at Subdivisional Scale
87(6)
4.5 Investigating Multiscale Teleconnections of ISMR
93(14)
4.5.1 Multiscale Investigation of Hydroclimatic Teleconnection Using HHT
93(1)
4.5.2 Data Details
94(1)
4.5.3 Multiscale Decomposition and Teleconnections of AISMR Time Series
95(5)
4.5.4 TDIC Analysis of AISMR Time Series
100(4)
4.5.5 MEMD-based TDIC for Hydroclimatic Teleconnection
104(3)
4.6 Developing Hourly IDF Curves Based on Multivariate Empirical Mode Decomposition and Scaling Theory
107(7)
4.6.1 MEMD-EV-PWM Framework for Developing Hourly IDF Curves from Coarse Resolution Rainfall Data
108(1)
4.6.2 Developing IDF Curves for Colaba, Mumbai, from Hourly Data
108(3)
4.6.3 Development of Hourly IDF Curves for Cities in Kerala from Daily Data
111(3)
4.7 Closure
114(9)
Chapter 5 Multiscale Characterization of Streamflow and Sediment Load Using HHT
123(32)
5.1 Background
123(1)
5.2 Multiscale Characterization of Streamflow and TSS Concentration from Mahanadi River, India
124(19)
5.2.1 Description of Datasets
124(1)
5.2.2 Multiscale Spectral Analysis of Streamflow and TSS Concentration Series
124(7)
5.2.3 Investigating the Streamflow-Sediment Link Using TDIC Analysis
131(7)
5.2.4 Multifractal Description of Daily Streamflow and TSS Datasets Using AOHSA
138(5)
5.3 MEMD-TDIC Coupled Framework for Investigating Multiscale Teleconnections of Reservoir Inflow
143(9)
5.3.1 Data Description
143(1)
5.3.2 HHT Analysis of Reservoir Inflow Based on MEMD
144(2)
5.3.3 TDIC Analysis Between Reservoir Inflow and Large-Scale Climate Oscillations
146(6)
5.4 Closure
152(3)
Chapter 6 MEMD-based Hybrid Schemes for Hydrological Modeling
155(38)
6.1 Background
155(1)
6.2 Prediction of Seasonal Rainfall Using MEMD-SLR Hybrid Model
155(9)
6.3 Modeling Short-term Drought Using the MEMD-based Hybrid Models
164(9)
6.4 Reservoir Inflow Prediction Using the MEMD-SLR Model
173(7)
6.5 Prediction of Daily Suspended Sediment Load Concentration
180(9)
6.6 Closure
189(4)
Chapter 7 Summary and Recommendations
193(2)
Appendices 195(10)
Index 205
Dr. Adarsh S, currently working as Associate professor with the Department of Civil Engg., TKM College of Engineering Kollam, Kerala India, is a leading researcher in statistical hydrology. He completed his Ph.D. from the prestigious Indian Institute of Technology Bombay (IITBombay) India in 2018 by receiving the Excellence in Research Award. His specific research interests include stochastic hydrology, application of Artificial Intelligence Techniques in hydrology, hydroclimatology, water resources systems, risk/uncertainty analysis in hydrology. He published 51 papers in international journals of high reputation, two book chapters, one book and 50 papers in national and international conferences (Citations: 290; h-Index : 9; i-10 index: 9). He supervised 7 Masters thesis, 36 UG projects, successfully completed 3 minor research projects and supervising two doctoral scholars. Dr. Adarsh is currently an editorial board member of Springer Nature Applied Sciences and an active reviewer of many prestigious journals (published by Elsevier, ASCE, IEEE, Wiley, Springer, Taylor & Francis etc.). He received the outstanding reviewer recognition by ASCE in 2019 and the Sivapalan Young Scientists Travel Award (SYSTA) in 2020-21. He is a member of International Commission on Statistical Hydrology (ICSH-IAHS), Institution of Engineers (India), Indian Society for Technical Education, European Water Resources Association, Indian Meteorological Society, Indian Water Works Association (IWWA) Indian Association of Hydrologists etc.

Dr. M. Janga Reddy, currently working as Associate Professor with the Department of Civil Engineering, Indian Institute of Technology, Bombay. He obtained Ph.D (Engg) from Indian Institute of Science, Bangalore in 2007. His research interests include Hydrology and Water Resources, Hydrological Modeling, Reservoir Systems , Irrigation, Hydropower, Flood control planning; Water supply systems- pipe networks, canals; Simulation and Optimization Modeling; Risk assessment of Hydrological Extremes floods and droughts. He published over 60 papers in peer reviewed journals and 70 papers in proceedings of national & international conferences in above research areas (over 2000 with an h-index: 21). Dr Reddy guided several students for their dissertations at IIT Bombay (4 PhD & 14 M.Tech. thesis). He is a member of the national & international professional bodies - IAHS (International Association for Hydraulics Research, UK), IE (Institution of Engineers, India), IWWA (Indian Water Works Association, India), and ISH (Indian Society for Hydraulics, India). He is an active reviewer of more than 35 international journals (published by ASCE, IEEE, Wiley, Springer, IAHS etc.).