Muutke küpsiste eelistusi

E-raamat: Multi-UAS Minimum Time Search in Dynamic and Uncertain Environments

  • Formaat: EPUB+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 30-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030765590
  • Formaat - EPUB+DRM
  • Hind: 196,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 30-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030765590

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book proposes some novel approaches for finding unmanned aerial vehicle trajectories to reach targets with unknown location in minimum time. At first, it reviews probabilistic search algorithms that have been used for dealing with the minimum time search (MTS) problem, and discusses how metaheuristics, and in particular the ant colony optimization algorithm (ACO), can help to find high-quality solutions with low computational time. Then, it describes two ACO-based approaches to solve the discrete MTS problem and the continuous MTS problem, respectively. In turn, it reports on the evaluation of the ACO-based discrete and continuous approaches to the MTS problem in different simulated scenarios, showing that the methods outperform in most all the cases over other state-of-the-art approaches. In the last part of the thesis, the work of integration of the proposed techniques in the ground control station developed by Airbus to control ATLANTE UAV is reported in detail, providing practical insights into the implementation of these methods for real UAVs.


 Introduction.- State of the Art.- Problem Formulation and Optimization
Approach.- MTS Algorithms for Cardinal UAV Motion Models.