About the editors |
|
xi | |
Foreword |
|
xiii | |
|
|
1 | (12) |
|
|
|
|
1 | (3) |
|
1.2 Multidimensional radar |
|
|
4 | (9) |
|
1.2.1 Multistatic radar imaging systems |
|
|
5 | (1) |
|
1.2.2 Multichannel radar imaging systems |
|
|
6 | (1) |
|
1.2.3 Multi-polarisation radar imaging systems |
|
|
7 | (1) |
|
1.2.4 Multi-frequency radar imaging systems |
|
|
7 | (1) |
|
1.2.5 Systems design considerations |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (3) |
|
Part I Multidimensional radar imaging algorithms |
|
|
13 | (242) |
|
2 Three-dimensional inverse synthetic aperture radar |
|
|
15 | (32) |
|
|
|
|
|
|
15 | (2) |
|
2.2 Algorithm description |
|
|
17 | (11) |
|
2.2.1 Multichannel ISAR signal model |
|
|
18 | (1) |
|
|
18 | (1) |
|
2.2.3 Received signal modelling |
|
|
18 | (3) |
|
2.2.4 Multichannel CLEAN algorithm |
|
|
21 | (2) |
|
2.2.5 3D reconstruction processing |
|
|
23 | (5) |
|
|
28 | (2) |
|
2.3.1 Scatterers realignment |
|
|
28 | (1) |
|
|
29 | (1) |
|
2.3.3 Performance indicators |
|
|
29 | (1) |
|
|
30 | (12) |
|
|
30 | (7) |
|
2.4.2 Experimental results |
|
|
37 | (5) |
|
|
42 | (5) |
|
|
43 | (4) |
|
|
47 | (62) |
|
|
|
|
3.1 Mathematical background |
|
|
47 | (13) |
|
3.1.1 Multichannel ISAR signal model |
|
|
48 | (3) |
|
3.1.2 High-resolution imaging of noncooperative moving targets |
|
|
51 | (4) |
|
|
55 | (5) |
|
3.2 Space-time adaptive processing for clutter suppression |
|
|
60 | (13) |
|
|
60 | (8) |
|
|
68 | (5) |
|
|
73 | (32) |
|
|
73 | (15) |
|
3.3.2 E-SDAP ISAR results |
|
|
88 | (17) |
|
|
105 | (4) |
|
|
105 | (4) |
|
4 Wide-band multi-look passive ISAR |
|
|
109 | (32) |
|
|
|
|
|
|
109 | (2) |
|
|
111 | (8) |
|
|
112 | (3) |
|
4.2.2 Merging of RD maps and ISAR data formation |
|
|
115 | (4) |
|
4.3 ISAR image processing |
|
|
119 | (4) |
|
4.3.1 Conventional ISAR imaging |
|
|
119 | (2) |
|
4.3.2 CS-based ISAR imaging |
|
|
121 | (2) |
|
|
123 | (14) |
|
4.4.1 Cooperative targets - WUT system |
|
|
123 | (7) |
|
4.4.2 Non-cooperative targets - SMARP |
|
|
130 | (7) |
|
|
137 | (4) |
|
|
139 | (2) |
|
|
141 | (48) |
|
|
|
|
141 | (6) |
|
|
146 | (1) |
|
|
146 | (1) |
|
5.1.3 Graceful degradation |
|
|
146 | (1) |
|
5.2 Tomographic image formation |
|
|
147 | (32) |
|
|
147 | (3) |
|
5.2.2 Fourier-based methods |
|
|
150 | (14) |
|
5.2.3 Matrix-based methods |
|
|
164 | (7) |
|
5.2.4 Multistats Doppler-radar tomography |
|
|
171 | (8) |
|
5.3 Practical considerations |
|
|
179 | (3) |
|
5.3.1 Considerations with system geometry |
|
|
179 | (3) |
|
5.3.2 Considerations for signal processing |
|
|
182 | (1) |
|
|
182 | (7) |
|
|
184 | (1) |
|
A Theoretical image resolution limits |
|
|
184 | (1) |
|
|
185 | (4) |
|
|
189 | (46) |
|
|
|
|
|
189 | (2) |
|
6.2 Signal processing for PCL-SAR based on DVB-T |
|
|
191 | (16) |
|
6.2.1 Structure of DVB-T signal |
|
|
192 | (1) |
|
6.2.2 Received DVB-T signal model |
|
|
192 | (1) |
|
6.2.3 Synchronization and reference signal reconstruction |
|
|
193 | (3) |
|
6.2.4 Range compression in PCL-SAR |
|
|
196 | (2) |
|
|
198 | (2) |
|
6.2.6 Challenges for airborne PCL |
|
|
200 | (7) |
|
6.3 Multi-PCL-SAR for improved range resolution |
|
|
207 | (15) |
|
6.3.1 Range resolution improvement principle |
|
|
207 | (4) |
|
6.3.2 Scenario for multi-PCL-SAR |
|
|
211 | (1) |
|
6.3.3 Simulation of DVB-T range pulse response |
|
|
212 | (7) |
|
6.3.4 Optimal trajectories for multi-PCL-SAR |
|
|
219 | (3) |
|
6.4 Experimental verification |
|
|
222 | (5) |
|
6.4.1 Scenario definition |
|
|
222 | (3) |
|
6.4.2 Image results of PCL-SAR |
|
|
225 | (2) |
|
|
227 | (8) |
|
|
229 | (1) |
|
|
229 | (1) |
|
|
230 | (5) |
|
7 Sparsity-driven multistats ISAR image reconstruction |
|
|
235 | (20) |
|
|
|
236 | (2) |
|
7.1.1 Spatial decorrelation |
|
|
236 | (2) |
|
7.1.2 Foreshortening effect |
|
|
238 | (1) |
|
|
238 | (3) |
|
|
241 | (3) |
|
|
244 | (3) |
|
|
247 | (2) |
|
|
249 | (6) |
|
|
250 | (5) |
|
Part II Practical feasibility and applications |
|
|
|
8 Rotor blade parameter estimation with multichannel passive radar |
|
|
255 | (32) |
|
|
|
|
255 | (2) |
|
8.1.1 Problem formulation |
|
|
255 | (1) |
|
8.1.2 Methods for helicopter classification |
|
|
256 | (1) |
|
8.1.3 Recognition of the propeller aircraft or other rotary-wing aircraft |
|
|
257 | (1) |
|
8.2 A geometric model of the helicopter |
|
|
257 | (5) |
|
8.2.1 The echo of the helicopter's fuselage |
|
|
257 | (1) |
|
|
258 | (3) |
|
|
261 | (1) |
|
8.2.4 The rotor parameters |
|
|
262 | (1) |
|
8.3 A model of the received echo signal |
|
|
262 | (7) |
|
8.3.1 A generic model of the echo signal |
|
|
262 | (1) |
|
8.3.2 A model of the main rotor blade echo |
|
|
263 | (5) |
|
8.3.3 A tail rotor blade echo model |
|
|
268 | (1) |
|
8.4 Method for determining rotor parameters |
|
|
269 | (7) |
|
8.4.1 Main rotor parameters |
|
|
271 | (4) |
|
8.4.2 Tail rotor parameters |
|
|
275 | (1) |
|
8.5 Main rotor imaging algorithm based on the target echo spectrogram |
|
|
276 | (3) |
|
8.6 Live signal processing experiment |
|
|
279 | (5) |
|
8.6.1 Measurement campaign |
|
|
279 | (1) |
|
8.6.2 Data pre-processing |
|
|
279 | (2) |
|
|
281 | (3) |
|
8.7 Conclusions and result discussion |
|
|
284 | (3) |
|
|
284 | (3) |
|
9 Multistats 3D ISAR imaging of maritime targets |
|
|
287 | (24) |
|
|
|
|
|
9.1 Multiview 3D MS AR image fusion |
|
|
289 | (6) |
|
|
292 | (3) |
|
9.2 Multiview 3D InlSAR image fusion in experimental scenarios |
|
|
295 | (13) |
|
9.2.1 Application of multiview 3D to multitemporal data |
|
|
296 | (8) |
|
9.2.2 Application of multiview 3D to multistats data |
|
|
304 | (1) |
|
9.2.3 Application of multiview 3D to a combination of multistatic and multitemporal data |
|
|
305 | (3) |
|
|
308 | (3) |
|
|
308 | (3) |
|
10 Challenges of semi-cooperative bi/multistatic synthetic aperture radar (SAR) using Cosmo-SkyMed as an illuminator |
|
|
311 | (14) |
|
|
|
|
|
|
311 | (1) |
|
10.2 Semi-cooperative bi/multistatic data collection |
|
|
312 | (1) |
|
10.3 Hardware considerations |
|
|
313 | (2) |
|
10.3.1 Analogue-to-digital convenors (ADCs): bulk delay offset |
|
|
313 | (1) |
|
|
314 | (1) |
|
10.4 Semi-cooperative bistatic SAR signal processing |
|
|
315 | (2) |
|
10.5 Effect of errors in transmitter position |
|
|
317 | (2) |
|
|
319 | (2) |
|
10.7 Experimental validation of semi-cooperative bistatic SAR signal processing |
|
|
321 | (1) |
|
|
322 | (3) |
|
|
323 | (2) |
|
11 Lesson learnt from NATO SET-196 RTG on `multichannel/multi-static radar imaging of non-cooperative targets' |
|
|
325 | (8) |
|
|
|
11.1 The role and impact of NATO SET-196 RTG within and outside NATO |
|
|
325 | (1) |
|
11.2 Progress made by NATO SET-196 within multidimensional radar imaging |
|
|
326 | (2) |
|
11.3 Lesson learnt and open issues |
|
|
328 | (1) |
|
11.4 The way ahead for multidimensional radar imaging systems |
|
|
328 | (5) |
|
11.4.1 Towards affordable multidimensional radar imaging systems |
|
|
329 | (1) |
|
11.4.2 Clusters and swarms |
|
|
330 | (3) |
Index |
|
333 | |