Muutke küpsiste eelistusi

E-raamat: Multidimensional Second Order Stochastic Processes

(California State Univ, San Bernardino, Usa)
  • Formaat: 344 pages
  • Sari: Series On Multivariate Analysis 2
  • Ilmumisaeg: 27-Feb-1997
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814497893
  • Formaat - PDF+DRM
  • Hind: 36,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 344 pages
  • Sari: Series On Multivariate Analysis 2
  • Ilmumisaeg: 27-Feb-1997
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789814497893

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a research-expository treatment of infinite-dimensional nonstationary stochastic processes or time series. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes and also the stationary class. Emphasis is on the use of functional, harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Readers may find that the covariance kernel analysis is emphasized and it reveals another aspect of stochastic processes. This book is intended not only for probabilists and statisticians, but also for communication engineers.
Preface iii
Chapter I. Introduction and preliminaries
1(16)
1.1. Stationary processes
1(3)
1.2. Harmonizable processes
4(5)
1.3. Multidimensional and other extensions
9(6)
Bibliographical notes
15(2)
Chapter II. Hilbert modules and covariance kernels
17(36)
2.1. Normal Hilbert B(H)-modules
17(4)
2.2. Submodules, operators and functionals
21(5)
2.3. Characterization and structure
26(6)
2.4. Positive definite kernels and reproducing kernel spaces
32(14)
2.5. Harmonic analysis for normal Hilbert B(H)-modules
46(6)
Bibliographical notes
52(1)
Chapter III. Stochastic measures and operator valued bimeasures
53(95)
3.1. Semivariations and variations
53(21)
3.2. Orthogonally scattered dilations
74(12)
3.3. Gramian orthogonally scattered dilations
86(21)
3.4. The spaces L(1)(F) and L(2)(F)
107(12)
3.5. The spaces XXX(1)(XXX) and XXX(2)(M)
119(10)
3.6. Riesz type theorems
129(7)
3.7. Convergence
136(9)
Bibliographical notes
145(3)
Chapter IV. Multidimensional stochastic processes
148(55)
4.1. General concepts
148(3)
4.2. Stationary processes
151(4)
4.3. Harmonizable processes
155(11)
4.4. V-bounded processes
166(7)
4.5. Cramer and Karhunen classes
173(5)
4.6. Series representations
178(5)
4.7. Moving average representations
183(1)
4.8. Approximation and convergence
184(8)
4.9. Subordination
192(8)
Bibliographical notes
200(3)
Chapter V. Special topics
203(45)
5.1. Wold decompositions
203(5)
5.2. Cramer decompositions
208(4)
5.3. The KF-class
212(6)
5.4. Uniformly bounded linearly stationary processes
218(5)
5.5. Periodically correlated processes
223(11)
5.6. Final remarks
234(11)
(1) Isotropic processes
234(3)
(2) Processes on hypergroups
237(4)
(3) Processes on locally compact groups
241(4)
Bibliographical notes
245(3)
Chapter VI. Applications
248(48)
6.1. Prediction problems
248(11)
6.2. Kalman filter
259(16)
6.3. Sampling theorems
275(10)
6.4. Strong laws of large numbers
285(8)
Bibliographical notes
293(3)
References 296(20)
Indices 316
Notation index 316(6)
Author Index 322(4)
Subject index 326