Muutke küpsiste eelistusi

E-raamat: Multidisciplinary Design Optimization of Complex Structures Under Uncertainty

(University of Electronic Science and Technology of China, China),
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the realm of engineering structures design, the inevitability of uncertainties poses a significant challenge. Uncertainty-Based Multidisciplinary Design and Optimization (UBMDO) stands out for its dual ability to precisely quantify the impact of uncertain variables and harness the potential of multidisciplinary design and optimization, thereby attracting considerable attention. From basic theory to advanced applications, this book helps readers achieve more efficient and reliable design optimization in complex systems through rich case studies and practical technical guidance.

The book systematically expounds the fundamental theories and methods of UBMDO, encompassing crucial techniques such as uncertainty modeling, sensitivity analysis, approximate modeling, and uncertainty-based optimization. It also introduces various uncertainty analysis methods, such as stochastic, non-probabilistic, and hybrid approaches, aiding readers in comprehending and managing uncertainty within systems. Through diverse practical engineering cases in fields like machinery, aerospace, and energy, it illustrates the specific application and implementation process of the UBMDO method. Rich graphics, algorithms, and simulation results augment the practicality and applicability of the theoretical knowledge. Furthermore, it explores in depth the future development trends and challenges of UBMDO, sparking innovative thinking and research interests among readers in this field.

Multidisciplinary Design Optimization of Complex Structures Under Uncertainty caters to a diverse audience: engineers specializing in multidisciplinary design optimization are given the tools to master uncertainty management, and researchers in related fields will gain important theoretical insights and practical guidance in uncertainty analysis. Additionally, scholars and educators can utilize the book as a comprehensive resource for advanced courses, enabling students to grasp the latest UBMDO applications; and decision makers and managers handling complex systems can extract methods from the book, facilitating improved risk assessment and strategic development through uncertainty-based optimization.



From basic theory to advanced applications, this helps readers achieve more efficient and reliable design optimization in complex systems through rich case studies and practical technical guidance, presenting the fundamental theories and methods of Uncertainty-Based Multidisciplinary Design and Optimization.

1. Introduction.
2. Basic Knowledge of UBMDO.
3. Approximate Method.
4. Uncertainty Analysis Method.
5. Deterministic MDO Method.
6. UBMDO Method.
7. Application of Advanced UBMDO in Aviation Equipment.
8. Application of MDO Considering Random and Interval Uncertainty in Energy Equipment.
9. Application of Adaptive Surrogate Model-assisted UBMDO in Propulsion Equipment.
10. The Development Prospect of UBMDO.

Debiao Meng is an associate professor in the School of Mechanical and Electrical Engineering at the University of Electronic Science and Technology of China, China.

Shun-Peng Zhu is a professor in the School of Mechanical and Electrical Engineering at the University of Electronic Science and Technology of China, China.