Preface |
|
xv | |
Acknowledgments |
|
xvii | |
About the Author |
|
xix | |
|
Chapter 1 Introduction to Multilevel Modeling |
|
|
1 | (20) |
|
|
1 | (2) |
|
What Multilevel Modeling Does |
|
|
3 | (1) |
|
The Importance of Multilevel Theory |
|
|
4 | (1) |
|
|
5 | (1) |
|
Common Types of Multilevel Model |
|
|
6 | (4) |
|
The Null Unconditional Random Intercept Model |
|
|
6 | (2) |
|
The Conditional Random Intercept Model |
|
|
8 | (1) |
|
The Conditional Random Coefficients Model |
|
|
9 | (1) |
|
The Random Intercept Regression Model |
|
|
9 | (1) |
|
The Random Intercept ANCOVA Model |
|
|
9 | (1) |
|
The Random Coefficients ANCOVA Model |
|
|
10 | (1) |
|
Mediation and Moderation Models in Multilevel Analysis |
|
|
10 | (2) |
|
Alternative Statistical Packages |
|
|
12 | (1) |
|
Multilevel Modeling Versus GEE |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (2) |
|
Challenge Questions With Answers |
|
|
18 | (3) |
|
Chapter 2 Assumptions of Multilevel Modeling |
|
|
21 | (36) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
Construct Operationalization and Validation |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (4) |
|
Balanced and Unbalanced Designs |
|
|
29 | (1) |
|
|
30 | (1) |
|
Using Ordinal Items as Continuous |
|
|
30 | (1) |
|
Linearity and Nonlinearity |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Centered and Standardized Data |
|
|
34 | (5) |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
39 | (1) |
|
Dealing With Multicollinearity |
|
|
40 | (1) |
|
Homogeneity of Error Variance |
|
|
40 | (3) |
|
Normally Distributed Residuals |
|
|
43 | (2) |
|
Normal Distribution of Variables |
|
|
45 | (1) |
|
Normal Distribution of Random Effects |
|
|
45 | (1) |
|
|
45 | (2) |
|
Dealing With Failure to Converge |
|
|
46 | (1) |
|
Covariance Structure Assumptions |
|
|
47 | (3) |
|
|
47 | (1) |
|
Random Effects and Repeated Measures |
|
|
48 | (1) |
|
Variance Components Covariance Structure |
|
|
48 | (1) |
|
Diagonal Covariance Structure |
|
|
48 | (1) |
|
The Unstructured Covariance Structure |
|
|
49 | (1) |
|
Choosing a Covariance Structure Assumption |
|
|
49 | (1) |
|
Software Defaults for Covariance Structure |
|
|
50 | (1) |
|
|
50 | (2) |
|
|
52 | (2) |
|
Challenge Questions With Answers |
|
|
54 | (3) |
|
|
57 | (44) |
|
|
57 | (1) |
|
Testing the Need for Multilevel Modeling |
|
|
58 | (2) |
|
|
58 | (1) |
|
The Intraclass Correlation Coefficient (ICC) |
|
|
59 | (1) |
|
Variance Components/ICC Test Results vs. ANOVA Results |
|
|
59 | (1) |
|
|
60 | (2) |
|
Partition of Variance Components |
|
|
62 | (1) |
|
|
62 | (33) |
|
|
62 | (1) |
|
|
63 | (7) |
|
|
70 | (3) |
|
|
73 | (5) |
|
|
78 | (13) |
|
|
91 | (4) |
|
|
95 | (1) |
|
|
96 | (1) |
|
Challenge Questions With Answers |
|
|
97 | (4) |
|
Chapter 4 Estimating Multilevel Models |
|
|
101 | (22) |
|
|
101 | (2) |
|
Why Not Just Use OLS Regression? |
|
|
103 | (1) |
|
Why Not Just Use GLM (ANOVA)? |
|
|
104 | (1) |
|
|
104 | (7) |
|
Maximum Likelihood Estimation |
|
|
105 | (1) |
|
Restricted Maximum Likelihood Estimation |
|
|
106 | (1) |
|
Full Information Maximum Likelihood Estimation |
|
|
106 | (1) |
|
|
107 | (1) |
|
Software Estimation Defaults |
|
|
108 | (3) |
|
Robust and Cluster-Robust Standard Errors |
|
|
111 | (7) |
|
Statistics Package Support for Robust Estimation |
|
|
114 | (1) |
|
|
114 | (4) |
|
|
118 | (1) |
|
|
119 | (2) |
|
Challenge Questions With Answers |
|
|
121 | (2) |
|
Chapter 5 Goodness of Fit and Effect Size in Multilevel Models |
|
|
123 | (20) |
|
|
123 | (1) |
|
Goodness of Fit Measures and Tests |
|
|
124 | (6) |
|
|
124 | (1) |
|
Information Criteria Measures |
|
|
124 | (4) |
|
|
128 | (1) |
|
Manual Computation of AIC and BIC |
|
|
128 | (1) |
|
Software Support for Model Fit |
|
|
128 | (2) |
|
|
130 | (7) |
|
|
130 | (1) |
|
Proportional Reduction in Variance |
|
|
130 | (2) |
|
Partition of Variance Components |
|
|
132 | (1) |
|
Intraclass Correlation (ICC) |
|
|
133 | (1) |
|
R2 for Fixed Effects in the Full Model |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
Effect Size and Endogeneity |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
Challenge Questions With Answers |
|
|
140 | (3) |
|
Chapter 6 The Two-Level Random Intercept Model |
|
|
143 | (48) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (15) |
|
|
144 | (1) |
|
|
145 | (6) |
|
|
151 | (8) |
|
|
159 | (5) |
|
|
159 | (1) |
|
|
159 | (2) |
|
|
161 | (3) |
|
|
164 | (5) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
165 | (4) |
|
|
169 | (8) |
|
|
169 | (1) |
|
|
170 | (3) |
|
|
173 | (4) |
|
|
177 | (7) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (6) |
|
|
184 | (2) |
|
|
186 | (1) |
|
Challenge Questions With Answers |
|
|
187 | (4) |
|
Chapter 7 The Two-Level Random Coefficients Model |
|
|
191 | (42) |
|
|
191 | (2) |
|
|
191 | (1) |
|
|
191 | (2) |
|
|
193 | (7) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (5) |
|
|
200 | (6) |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (5) |
|
|
206 | (6) |
|
|
206 | (1) |
|
|
206 | (2) |
|
|
208 | (4) |
|
|
212 | (5) |
|
|
212 | (1) |
|
|
212 | (2) |
|
|
214 | (3) |
|
|
217 | (8) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (7) |
|
Significance (p) Values for Variance Components |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
Challenge Questions With Answers |
|
|
228 | (5) |
|
Chapter 8 The Three-Level Unconditional Random Intercept Model with Longitudinal Data |
|
|
233 | (32) |
|
|
233 | (4) |
|
|
234 | (1) |
|
|
235 | (2) |
|
Longitudinal Versus Repeated Measures Models |
|
|
237 | (1) |
|
|
237 | (5) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (3) |
|
|
242 | (4) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (3) |
|
|
246 | (5) |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
247 | (4) |
|
|
251 | (5) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (4) |
|
|
256 | (4) |
|
|
256 | (1) |
|
|
256 | (2) |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
261 | (1) |
|
Challenge Questions With Answers |
|
|
262 | (3) |
|
Chapter 9 Repeated Measures and Heterogeneous Variance Models |
|
|
265 | (40) |
|
|
265 | (10) |
|
|
265 | (1) |
|
Alternative Ways to Model Time |
|
|
266 | (6) |
|
Repeated Measures and Heterogeneous Variances |
|
|
272 | (1) |
|
Repeated Variance Components vs. Residual Variance Components |
|
|
272 | (2) |
|
|
274 | (1) |
|
|
275 | (4) |
|
|
275 | (1) |
|
|
275 | (1) |
|
|
276 | (3) |
|
|
279 | (5) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (4) |
|
|
284 | (5) |
|
|
284 | (1) |
|
|
284 | (2) |
|
|
286 | (3) |
|
|
289 | (4) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (3) |
|
|
293 | (6) |
|
|
293 | (2) |
|
|
295 | (3) |
|
|
298 | (1) |
|
|
299 | (2) |
|
|
301 | (1) |
|
Challenge Questions With Answers |
|
|
302 | (3) |
|
Chapter 10 Residual and Influence Analysis for a Three-Level RC Model |
|
|
305 | (80) |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (10) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (2) |
|
Types of Influence, Leverage, and Distance Measures |
|
|
313 | (3) |
|
Statistical Package Support |
|
|
316 | (2) |
|
|
318 | (1) |
|
|
319 | (19) |
|
|
319 | (1) |
|
|
319 | (4) |
|
|
323 | (3) |
|
|
326 | (5) |
|
|
331 | (6) |
|
Saving and Printing Outliers |
|
|
337 | (1) |
|
|
338 | (13) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
340 | (3) |
|
|
343 | (3) |
|
|
346 | (2) |
|
Saving and Printing Outliers |
|
|
348 | (3) |
|
|
351 | (8) |
|
|
351 | (1) |
|
|
351 | (2) |
|
|
353 | (1) |
|
|
354 | (4) |
|
|
358 | (1) |
|
Saving and Printing Outliers |
|
|
358 | (1) |
|
|
359 | (6) |
|
|
359 | (1) |
|
|
359 | (2) |
|
|
361 | (1) |
|
|
362 | (3) |
|
|
365 | (1) |
|
Saving and Printing Outliers |
|
|
365 | (1) |
|
|
365 | (13) |
|
|
365 | (1) |
|
|
365 | (1) |
|
|
366 | (3) |
|
|
369 | (4) |
|
|
373 | (3) |
|
Saving Residual Outliers in R |
|
|
376 | (2) |
|
|
378 | (2) |
|
|
380 | (1) |
|
Challenge Questions With Answers |
|
|
381 | (4) |
|
Chapter 11 Cross-Classified Linear Mixed Models |
|
|
385 | (52) |
|
|
385 | (2) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (9) |
|
|
389 | (1) |
|
Null Random Effects Models |
|
|
389 | (1) |
|
Null Additive Cross-Classified Model |
|
|
390 | (4) |
|
Additive Cross-Classified Model With Covariates |
|
|
394 | (2) |
|
Nonadditive Cross-Classified Model With Level Interaction |
|
|
396 | (2) |
|
|
398 | (10) |
|
|
398 | (3) |
|
Null Random Effects Models |
|
|
401 | (2) |
|
Null Additive Cross-Classified Model |
|
|
403 | (1) |
|
Additive Cross-Classified Model With Covariates |
|
|
404 | (3) |
|
Nonadditive Cross-Classified Model With Level Interaction |
|
|
407 | (1) |
|
|
408 | (6) |
|
|
408 | (1) |
|
Null Random Effects Models |
|
|
409 | (1) |
|
Null Additive Cross-Classified Model |
|
|
410 | (1) |
|
Additive Cross-Classified Model With Covariates |
|
|
411 | (2) |
|
Nonadditive Cross-Classified Model With Level Interaction |
|
|
413 | (1) |
|
|
414 | (11) |
|
|
414 | (4) |
|
Null Random Effects Models |
|
|
418 | (1) |
|
Null Additive Cross-Classified Model |
|
|
419 | (2) |
|
Additive Cross-Classified Model With Covariates |
|
|
421 | (4) |
|
Nonadditive Cross-Classified Model With Level Interaction |
|
|
425 | (1) |
|
|
425 | (7) |
|
|
425 | (1) |
|
Null Random Effects Models |
|
|
426 | (2) |
|
Null Additive Cross-Classified Model |
|
|
428 | (1) |
|
Additive Cross-Classified Model With Covariates |
|
|
429 | (1) |
|
Nonadditive Cross-Classified Model With Level Interaction |
|
|
430 | (2) |
|
|
432 | (1) |
|
|
433 | (1) |
|
Challenge Questions With Answers |
|
|
434 | (3) |
|
Chapter 12 Generalized Linear Mixed Models |
|
|
437 | (44) |
|
|
437 | (2) |
|
|
439 | (1) |
|
|
440 | (2) |
|
|
442 | (1) |
|
|
443 | (5) |
|
|
443 | (2) |
|
|
445 | (1) |
|
|
446 | (2) |
|
|
448 | (5) |
|
|
448 | (2) |
|
|
450 | (1) |
|
|
450 | (3) |
|
|
453 | (9) |
|
|
453 | (2) |
|
|
455 | (4) |
|
|
459 | (3) |
|
|
462 | (9) |
|
|
462 | (3) |
|
|
465 | (2) |
|
|
467 | (4) |
|
|
471 | (5) |
|
|
471 | (1) |
|
|
472 | (1) |
|
|
473 | (3) |
|
|
476 | (1) |
|
|
477 | (1) |
|
Challenge Questions With Answers |
|
|
478 | (3) |
Appendix 1 Data Used in Examples. Refers to Student Companion Website |
|
481 | (6) |
Appendix 2 Reporting Multilevel Results |
|
487 | (6) |
References |
|
493 | (10) |
Index |
|
503 | |