Foreword |
|
xi | |
|
|
xiii | |
|
|
xvii | |
|
|
xix | |
|
|
1 | (6) |
|
|
|
|
|
7 | (14) |
|
|
|
|
|
|
|
8 | (2) |
|
2.1.1 Motivating Examples |
|
|
8 | (1) |
|
2.1.2 Semantic Description of Photos Today |
|
|
9 | (1) |
|
2.1.3 Services We Need for Photo Collections |
|
|
10 | (1) |
|
|
10 | (4) |
|
2.2.1 Semantic Description of Music Assets |
|
|
11 | (1) |
|
2.2.2 Music Recommendation and Discovery |
|
|
12 | (1) |
|
2.2.3 Management of Personal Music Collections |
|
|
13 | (1) |
|
2.3 Annotation in Professional Media Production and Archiving |
|
|
14 | (4) |
|
2.3.1 Motivating Examples |
|
|
15 | (2) |
|
2.3.2 Requirements for Content Annotation |
|
|
17 | (1) |
|
|
18 | (3) |
|
|
19 | (2) |
|
3 Canonical Processes of Semantically Annotated Media Production |
|
|
21 | (14) |
|
|
|
|
|
22 | (5) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (6) |
|
3.2.1 CeWe Color Photo Book |
|
|
27 | (2) |
|
|
29 | (4) |
|
3.3 Conclusion and Future Work |
|
|
33 | (2) |
|
4 Feature Extraction for Multimedia Analysis |
|
|
35 | (24) |
|
|
|
|
|
4.1 Low-Level Feature Extraction |
|
|
36 | (18) |
|
4.1.1 What Are Relevant Low-Level Features? |
|
|
36 | (1) |
|
|
36 | (9) |
|
|
45 | (9) |
|
4.2 Feature Fusion and Multi-modality |
|
|
54 | (4) |
|
4.2.1 Feature Normalization |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
5 Machine Learning Techniques for Multimedia Analysis |
|
|
59 | (22) |
|
|
|
|
|
|
|
|
61 | (4) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
5.1.4 A Supervised Algorithm Example |
|
|
63 | (2) |
|
|
65 | (10) |
|
5.2.1 Historical Classification Algorithms |
|
|
65 | (2) |
|
|
67 | (4) |
|
5.2.3 Classifying Sequences |
|
|
71 | (2) |
|
5.2.4 Biologically Inspired Machine Learning Techniques |
|
|
73 | (2) |
|
|
75 | (5) |
|
|
75 | (1) |
|
5.3.2 Non-trainable Combiners |
|
|
75 | (1) |
|
5.3.3 Trainable Combiners |
|
|
76 | (1) |
|
5.3.4 Combination of Weak Classifiers |
|
|
77 | (1) |
|
|
78 | (1) |
|
5.3.6 Consensual Clustering |
|
|
78 | (2) |
|
5.3.7 Classifier Fusion Properties |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (18) |
|
|
|
|
82 | (1) |
|
|
83 | (7) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (3) |
|
|
93 | (1) |
|
6.5 Linked Data Principles |
|
|
94 | (2) |
|
6.5.1 Dereferencing Using Basic Web Look-up |
|
|
95 | (1) |
|
6.5.2 Dereferencing Using Http 303 Redirects |
|
|
95 | (1) |
|
6.6 Development Practicalities |
|
|
96 | (3) |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (30) |
|
|
|
|
7.1 The Need for Ontologies on the Semantic Web |
|
|
100 | (1) |
|
7.2 Representing Ontological Knowledge Using OWL |
|
|
100 | (8) |
|
7.2.1 OWL Constructs and OWL Syntax |
|
|
100 | (2) |
|
7.2.2 The Formal Semantics of OWL and its Different Layers |
|
|
102 | (4) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
7.3 A Language to Represent Simple Conceptual Vocabularies: SKOS |
|
|
108 | (5) |
|
7.3.1 Ontologies versus Knowledge Organization Systems |
|
|
108 | (1) |
|
7.3.2 Representing Concept Schemes Using SKOS |
|
|
109 | (2) |
|
7.3.3 Characterizing Concepts beyond SKOS |
|
|
111 | (1) |
|
7.3.4 Using SKOS Concept Schemes on the Semantic Web |
|
|
112 | (1) |
|
7.4 Querying on the Semantic Web |
|
|
113 | (16) |
|
|
113 | (5) |
|
|
118 | (5) |
|
7.4.3 Default Negation in SPARQL |
|
|
123 | (1) |
|
7.4.4 Well-Formed Queries |
|
|
124 | (1) |
|
7.4.5 Querying for Multimedia Metadata |
|
|
124 | (2) |
|
7.4.6 Partitioning Datasets |
|
|
126 | (1) |
|
|
127 | (2) |
|
8 Multimedia Metadata Standards |
|
|
129 | (16) |
|
|
|
|
|
|
130 | (10) |
|
|
130 | (2) |
|
|
132 | (1) |
|
8.1.3 SMPTE Metadata Standards |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
8.1.12 NewsML G2 and rNews |
|
|
138 | (1) |
|
8.1.13 W3C Ontology for Media Resources |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (3) |
|
|
143 | (2) |
|
9 The Core Ontology for Multimedia |
|
|
145 | (18) |
|
|
|
|
|
145 | (1) |
|
9.2 A Multimedia Presentation for Granddad |
|
|
146 | (3) |
|
|
149 | (1) |
|
9.4 Requirements for Designing a Multimedia Ontology |
|
|
150 | (1) |
|
9.5 A Formal Representation for MPEG-7 |
|
|
150 | (7) |
|
9.5.1 DOLCE as Modeling Basis |
|
|
151 | (1) |
|
9.5.2 Multimedia Patterns |
|
|
151 | (4) |
|
|
155 | (2) |
|
9.5.4 Comparison with Requirements |
|
|
157 | (1) |
|
9.6 Granddad's Presentation Explained by COMM |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (3) |
|
10 Knowledge-Driven Segmentation and Classification |
|
|
163 | (20) |
|
|
|
Georgios Th. Papadopoulos |
|
|
|
|
|
|
|
164 | (1) |
|
10.2 Semantic Image Segmentation |
|
|
165 | (5) |
|
10.2.1 Graph Representation of an Image |
|
|
165 | (1) |
|
10.2.2 Image Graph Initialization |
|
|
165 | (2) |
|
10.2.3 Semantic Region Growing |
|
|
167 | (3) |
|
10.3 Using Contextual Knowledge to Aid Visual Analysis |
|
|
170 | (7) |
|
10.3.1 Contextual Knowledge Formulation |
|
|
170 | (3) |
|
10.3.2 Contextual Relevance |
|
|
173 | (4) |
|
10.4 Spatial Context and Optimization |
|
|
177 | (4) |
|
|
177 | (1) |
|
10.4.2 Low-Level Visual Information Processing |
|
|
177 | (1) |
|
10.4.3 Initial Region-Concept Association |
|
|
178 | (1) |
|
10.4.4 Final Region-Concept Association |
|
|
179 | (2) |
|
|
181 | (2) |
|
11 Reasoning for Multimedia Analysis |
|
|
183 | (22) |
|
|
|
|
|
|
|
|
|
184 | (8) |
|
11.1.1 The Fuzzy DL f-SHIN |
|
|
184 | (1) |
|
11.1.2 The Tableaux Algorithm |
|
|
185 | (2) |
|
11.1.3 The FiRE Fuzzy Reasoning Engine |
|
|
187 | (5) |
|
11.2 Spatial Features for Image Region Labeling |
|
|
192 | (4) |
|
11.2.1 Fuzzy Constraint Satisfaction Problems |
|
|
192 | (1) |
|
11.2.2 Exploiting Spatial Features Using Fuzzy Constraint Reasoning |
|
|
193 | (3) |
|
11.3 Fuzzy Rule Based Reasoning Engine |
|
|
196 | (5) |
|
11.4 Reasoning over Resources Complementary to Audiovisual Streams |
|
|
201 | (4) |
|
12 Multi-Modal Analysis for Content Structuring and Event Detection |
|
|
205 | (18) |
|
|
|
|
|
|
|
12.1 Moving Beyond Shots for Extracting Semantics |
|
|
206 | (1) |
|
12.2 A Multi-Modal Approach |
|
|
207 | (1) |
|
|
207 | (1) |
|
12.4 Case Study 1: Field Sports |
|
|
208 | (6) |
|
12.4.1 Content Structuring |
|
|
208 | (5) |
|
12.4.2 Concept Detection Leveraging Complementary Text Sources |
|
|
213 | (1) |
|
12.5 Case Study 2: Fictional Content |
|
|
214 | (7) |
|
12.5.1 Content Structuring |
|
|
215 | (4) |
|
12.5.2 Concept Detection Leveraging Audio Description |
|
|
219 | (2) |
|
12.6 Conclusions and Future Work |
|
|
221 | (2) |
|
13 Multimedia Annotation Tools |
|
|
223 | (18) |
|
|
|
|
|
|
|
224 | (1) |
|
13.2 SVAT: Professional Video Annotation |
|
|
225 | (4) |
|
|
225 | (3) |
|
13.2.2 Semantic Annotation |
|
|
228 | (1) |
|
13.3 KAT: Semi-automatic, Semantic Annotation of Multimedia Content |
|
|
229 | (10) |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
234 | (1) |
|
13.3.4 Using COMM as an Underlying Model: Issues and Solutions |
|
|
234 | (3) |
|
13.3.5 Semi-automatic Annotation: An Example |
|
|
237 | (2) |
|
|
239 | (2) |
|
14 Information Organization Issues in Multimedia Retrieval Using Low-Level Features |
|
|
241 | (20) |
|
|
|
|
|
14.1 Efficient Multimedia Indexing Structures |
|
|
242 | (7) |
|
14.1.1 An Efficient Access Structure for Multimedia Data |
|
|
243 | (2) |
|
14.1.2 Experimental Results |
|
|
245 | (4) |
|
|
249 | (1) |
|
14.2 Feature Term Based Index |
|
|
249 | (10) |
|
|
250 | (1) |
|
14.2.2 Feature Term Distribution |
|
|
251 | (1) |
|
14.2.3 Feature Term Extraction |
|
|
252 | (1) |
|
14.2.4 Feature Dimension Selection |
|
|
253 | (1) |
|
14.2.5 Collection Representation and Retrieval System |
|
|
254 | (2) |
|
|
256 | (2) |
|
|
258 | (1) |
|
14.3 Conclusion and Future Trends |
|
|
259 | (2) |
|
|
259 | (2) |
|
15 The Role of Explicit Semantics in Search and Browsing |
|
|
261 | (18) |
|
|
|
|
15.1 Basic Search Terminology |
|
|
261 | (1) |
|
15.2 Analysis of Semantic Search |
|
|
262 | (8) |
|
15.2.1 Query Construction |
|
|
263 | (2) |
|
|
265 | (2) |
|
15.2.3 Presentation of Results |
|
|
267 | (2) |
|
|
269 | (1) |
|
15.3 Use Case A: Keyword Search in ClioPatria |
|
|
270 | (4) |
|
15.3.1 Query Construction |
|
|
270 | (1) |
|
|
270 | (3) |
|
15.3.3 Result Visualization and Organization |
|
|
273 | (1) |
|
15.4 Use Case B: Faceted Browsing in ClioPatria |
|
|
274 | (3) |
|
15.4.1 Query Construction |
|
|
274 | (2) |
|
|
276 | (1) |
|
15.4.3 Result Visualization and Organization |
|
|
276 | (1) |
|
|
277 | (2) |
|
|
279 | (2) |
|
|
|
References |
|
281 | (20) |
Author Index |
|
301 | (2) |
Subject Index |
|
303 | |