Muutke küpsiste eelistusi

E-raamat: Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures: 10th International Workshop, ML-CDS 2020, and 9th International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed joint proceedings of the 10th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2020, and the 9th International Workshop on Clinical Image-Based Procedures, CLIP 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic.

The 4 full papers presented at ML-CDS 2020 and the 9 full papers presented at CLIP 2020 were carefully reviewed and selected from numerous submissions to ML-CDS and 10 submissions to CLIP. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. The CLIP workshops provides a forum for work centered on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.

CLIP 2020.- Optimal Targeting Visualizations for Surgical Navigation of
Iliosacral Screws.- Prediction of Type II Diabetes Onset with Computed
Tomography and Electronic Medical Records.- A Radiomics-based Machine
Learning Approach to Assess Collateral Circulation in Stroke on Non-contrast
Computed Tomography.- Image-based Subthalamic Nucleus Segmentation for Deep
Brain Surgery With Electrophysiology Aided Refinement.- 3D Slicer
Craniomaxillofacial Modules Support Patient-specific Decision-making for
Personalized Healthcare in Dental Research.- Learning Representations of
Endoscopic Videos to Detect Tool Presence Without Supervision.- Single-shot
Deep Volumetric Regression for Mobile Medical Augmented Reality.- A Baseline
Approach for AutoImplant: the MICCAI 2020 Cranial Implant Design Challenge.-
Adversarial Prediction of Radiotherapy Treatment Machine Parameters.- ML-CDS
2020.- Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data.-
Towards Automated Diagnosis with Attentive Multi-Modal Learning Using
Electronic Health Records and Chest X-rays.- LUCAS: LUng CAncer Screening
with Multimodal Biomarkers.- Automatic Breast Lesion Classification by Joint
Neural Analysis of Mammography and Ultrasound.