Muutke küpsiste eelistusi

E-raamat: Multiphase Flow Dynamics 5: Nuclear Thermal Hydraulics

  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Apr-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319151564
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Apr-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319151564

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics.

This present third edition includes various updates, extensions, improvements and corrections.
1 Heat Release in the Reactor Core
1(14)
1.1 Thermal Power and Thermal Power Density
1(3)
1.2 Thermal Power Density and Fuel Material
4(1)
1.3 Thermal Power Density and Moderator Temperature
5(1)
1.4 Spatial Distribution of the Thermal Power Density
6(2)
1.5 Equalizing of the Spatial Distribution of the Thermal Power Density
8(5)
1.6 Nomenclature
13(2)
References
14(1)
2 Temperature Inside the Fuel Elements
15(32)
2.1 Steady-State Temperature Field
17(12)
2.2 Transient Temperature Field
29(7)
2.3 Influence of the Cladding Oxidation, Hydrogen Diffusion, and Corrosion Product Deposition
36(6)
2.3.1 Cladding Oxidation
36(5)
2.3.2 Hydrogen Diffusion
41(1)
2.3.3 Deposition
41(1)
2.4 Nomenclature
42(5)
References
44(3)
3 The "Simple" Steady Boiling Flow in a Pipe
47(42)
3.1 Mass Conservation
49(1)
3.2 Mixture Momentum Equation
50(3)
3.3 Energy Conservation
53(2)
3.4 The Idea of Mechanical and Thermodynamic Equilibrium
55(1)
3.5 Relaxing the Assumption of Mechanical Equilibrium
56(1)
3.6 Relaxing the Assumption of Thermodynamic Equilibrium
57(2)
3.7 The Relaxation Method
59(4)
3.8 The Boundary Layer Treatment
63(2)
3.9 The Boundary Layer Treatment with Considered Variable Effective Bubble Size
65(4)
3.10 Saturated Flow Boiling Heat Transfer
69(4)
3.11 Combining the Asymptotic Method with Boundary Layer Treatment Allowed for Variable Effective Bubble Size
73(1)
3.12 Separated Momentum Equations and Bubble Dynamics
73(7)
3.13 Nomenclature
80(9)
References
84(2)
Appendix A Sani's (1960) Data for Boiling Flow in a Pipe
86(3)
4 The "Simple" Steady Three-Fluid Boiling Flow in a Pipe
89(32)
4.1 Flow Regime Transition from Slug to Churn Turbulent Flow
90(1)
4.2 Instantaneous Liquid Redistribution in Film and Droplets
91(2)
4.3 Relaxing the Assumption for Instantaneous Liquid Redistribution in Film and Droplets, Entrainment, and Deposition
93(3)
4.4 Drift Flux Correlations
96(2)
4.5 Separated Momentum Equation
98(3)
4.6 Dynamic Evolution of the Mean Droplet Size
101(4)
4.6.1 Droplet Size Stability Limit
101(1)
4.6.2 Droplet Production Rate Due to Fragmentation
102(1)
4.6.3 Duration of the Fragmentation
103(1)
4.6.4 Collision and Coalescence
104(1)
4.7 Heat Transfer
105(2)
4.8 Mass Transfer
107(3)
4.9 Comparison with Experiments
110(4)
4.10 Nomenclature
114(7)
References
117(4)
5 Core Thermal Hydraulics
121(82)
5.1 Reactor Pressure Vessels
121(13)
5.2 Steady-State Flow in Heated Rod Bundles
134(26)
5.2.1 The NUPEC Experiment
134(18)
5.2.2 The SIEMENS Void Data for the ATRIUM 10 Fuel Bundle
152(1)
5.2.3 The FRIGG Experiments
153(5)
5.2.4 The THTF Experiments: High Pressure and Low Mass Flow
158(2)
5.3 Pressure Drop for Boiling Flow in Bundles
160(2)
5.4 Transient Boiling
162(5)
5.4.1 The NUPEC Transients in a Channel Simulating One Subchannel of a PWR Fuel Assembly
162(3)
5.4.2 The NUPEC Transients in PWR 5 × 5 Fuel Assembly
165(2)
5.5 Steady-State Critical Heat Flux
167(15)
5.5.1 Initial Zero-Dimensional Guess
169(4)
5.5.2 Three-Dimensional CHF Analysis
173(3)
5.5.3 Uncertainties
176(6)
5.6 Outlook -- Toward Large-Scale Turbulence Modeling in Bundles
182(3)
5.7 Outlook -- Toward Fine-Resolution Analysis
185(1)
5.8 Core Analysis
186(6)
5.9 Nomenclature
192(11)
References
194(6)
Appendix A Some Relevant Constitutive Relationships Addressed in this Analysis
200(3)
6 Flow Boiling and Condensation Stability Analysis
203(18)
6.1 State of the Art
203(2)
6.2 AREVA Boiling Stability Data for the ATRIUM 10B Fuel Bundle
205(5)
6.3 Flow Condensation Stability
210(11)
References
217(4)
7 Critical Multiphase Flow
221(90)
7.1 Definition of the Criticality Condition
221(3)
7.2 Grid Structure
224(2)
7.3 Iteration Strategy
226(1)
7.4 Single Phase Flow in Pipe
226(12)
7.4.1 No Friction Energy Dissipation, Constant Cross Section
226(10)
7.4.2 General Case, Perfect Gas
236(2)
7.5 Simple Two Phase Cases for Pipes and Nozzles
238(48)
7.5.1 Subcooled Critical Mass Flow Rate in Short Pipes, Orifices and Nozzles
241(1)
7.5.2 Frozen Homogeneous Non-developed Flow
242(3)
7.5.3 Non-homogeneous Developed Flow without Mass Exchange
245(1)
7.5.4 Equilibrium Homogeneous Flow
246(19)
7.5.5 Equilibrium Non-homogeneous Flow
265(13)
7.5.6 Inhomogeneous Developing Flow in Short Pipes and Nuzzles with Infinitely Fast Heat Exchange and with Limited Interfacial Mass Transfer
278(8)
7.6 Recent State of the Knowledge for Describing Critical Flow
286(10)
7.6.1 Bubbles Origination
286(7)
7.6.2 Bubble Fragmentation
293(2)
7.6.3 Bubble Coalescences
295(1)
7.6.4 Droplets Origination
295(1)
7.7 Examples for Application of the Theory of the Critical Flow
296(6)
7.7.1 Blow Down from Initially Closed Pipe
296(4)
7.7.2 Blow Down from Initially Closed Vessel
300(2)
7.8 Nomenclature
302(9)
References
306(5)
8 Steam Generators
311(52)
8.1 Introduction
311(1)
8.2 Some Popular Designs of Steam Generators
312(9)
8.2.1 U-Tube Type
312(8)
8.2.2 Once through Type
320(1)
8.2.3 Other Design Types
321(1)
8.3 Frequent Problems, Sound Design Practices
321(7)
8.4 Analytical Tools
328(6)
8.4.1 Some Preliminary Remarks on the Physical Problem to Be Solved
328(2)
8.4.2 Some Simple Conservation Principles
330(2)
8.4.3 Three-Dimensional Analysis
332(2)
8.5 Validation Examples
334(14)
8.5.1 Benchmark for Heat Exchanger Design with Complex Computer Codes
334(6)
8.5.2 Benchmark for Once through Steam Generator Design with Complex Computer Codes
340(1)
8.5.3 Three-Dimensional Benchmarks -- Comparison with Predictions of Older Computer Codes
341(7)
8.6 Primary Circuits of PWRs Up to 1976
348(1)
8.7 Primary Circuits of Modern PWRs
348(15)
Appendix A Some Useful Geometrical Relations in Preparing Geometrical Data for U-Tube Steam Generator Analysis
351(6)
References
357(6)
9 Moisture Separation
363(88)
9.1 Introduction
363(6)
9.2 Moisture Characteristics
369(4)
9.3 Simple Engineering Methods for Computation of the Efficiency of the Separation
373(25)
9.3.1 Cyclone Separators
373(16)
9.3.2 Vane Separators
389(9)
9.4 Velocity Field Modeling in Separators
398(8)
9.4.1 Kreith and Sonju Solution for the Decay of Turbulent Swirl in Pipes
398(2)
9.4.2 Potential Gas Flow in Vanes
400(1)
9.4.3 Trajectory of Particles in a Known Continuum Field
400(3)
9.4.4 Computational Fluid Dynamics Analyses of Cyclones
403(1)
9.4.5 Computational Fluid Dynamics Analyses of Vane Separators
404(2)
9.5 Experiments
406(31)
9.5.1 BWR Cyclones, PWR Steam Generator Cyclones
406(12)
9.5.2 Other Cyclone Types
418(4)
9.5.3 Vane Dryers
422(15)
9.6 Moisture Separation in NPP with PWRs Analyzed by Three-Fluid Models
437(6)
9.6.1 Separation Efficiency of the Specific Cyclone Design
439(1)
9.6.2 Efficiency of the Specific Vane Separator Design
440(1)
9.6.3 Uniformity of the Flow Passing the Vane Separators
441(1)
9.6.4 Efficiency of the Condensate Removal Locally and Integrally
442(1)
9.7 Nomenclature
443(8)
References
447(4)
10 Pipe Networks
451(54)
10.1 Some Basic Definitions
453(9)
10.1.1 Pipes
453(2)
10.1.2 Axis in the Space
455(1)
10.1.3 Diameters of Pipe Sections
456(1)
10.1.4 Reductions
457(1)
10.1.5 Elbows
457(1)
10.1.6 Creating a Library of Pipes
458(1)
10.1.7 Subsystem Network
458(1)
10.1.8 Discretization of Pipes
459(1)
10.1.9 Knots
460(2)
10.2 The 1983-Interatome Experiments
462(14)
10.2.1 Experiment 1.2
463(1)
10.2.2 Experiment 1.3
464(3)
10.2.3 Experiment 10.6
467(1)
10.2.4 Experiment 11.3
468(2)
10.2.5 Experiment 21
470(2)
10.2.6 Experiment 5
472(2)
10.2.7 Experiment 15
474(2)
10.3 Analysis of Several Pressure Transients in the Conventional Island of Pressurized Water Reactors
476(29)
References
503(2)
11 Some Auxiliary Systems
505(18)
11.1 High Pressure Reduction Station
505(3)
11.2 Gas Release in Research Reactors Piping
508(15)
11.2.1 Solubility of O2, N2 and H2 under 1 Bar Pressure
509(1)
11.2.2 Some General Remarks on the Gas Release- and Absorption Dynamics
510(1)
11.2.3 Gas Release in the Siphon Safety Pipe
511(1)
11.2.4 Radiolysis Gases: Generation, Absorption and Release
512(3)
11.2.5 Mixing in the Water Pool
515(1)
11.2.6 Computational Analyses
515(1)
11.2.6.1 Case 1 and 2: 0% and 1% Gas Volume Fraction at the Entrance of the CCS
516(1)
11.2.6.2 Case 3: 2.6% Gas Volume Fraction at the Entrance of the CCS
517(4)
References
521(2)
12 Emergency Condensers, Reheaters, Moisture Separators and Reheaters
523(48)
12.1 Introduction
523(1)
12.2 Simple Mathematical Illustration of the Operation of the System
524(3)
12.3 Performance of the Condenser as a Function of the Water Level and Pressure
527(1)
12.4 Condensate Removal
527(1)
12.5 Air-Cooled Condenser, Steam Reheater
528(18)
12.5.1 Heat Exchanger Power
528(4)
12.5.2 Intensifying Heat Transfer by Fins
532(2)
12.5.3 Heat Transfer at Finned Tubes
534(7)
12.5.4 Heat Conduction through Finned Pipe
541(1)
12.5.5 Condensation Inside a Pipe
542(1)
12.5.6 Flow Induced Pipe Vibrations
543(3)
12.6 Engineering Process Analysis of Moisture Separators and Reheaters
546(19)
How to Start?
547(1)
Mechanical Moisture Reduction
547(6)
Uniform Flow across the Bundles
553(1)
Flow Induced Vibrations
554(1)
Pressure Drop
555(1)
Heaters Thermal Power
555(3)
Vertical versus Horizontal
558(3)
Risk Analysis
561(2)
Summary and Conclusions
563(2)
12.7 Nomenclature
565(6)
References
568(3)
13 Core Degradation
571(4)
13.1 Processes during the Core Degradation Depending on the Structure Temperature
571(1)
13.2 Analytical Tools for Estimation of the Core Degradation
572(3)
References
573(2)
14 Melt-Coolant Interaction
575(18)
14.1 Melt-Coolant Interaction Analysis for the Boiling Water Reactor KARENA
576(9)
14.1.1 Interaction Inside the Guide Tubes
582(2)
14.1.2 Melt-Relocation through the Lower Core Grid
584(1)
14.1.3 Side Melt-Relocation through the Core Barrel
585(1)
14.1.4 Late Water Injection
585(1)
14.2 Pressure Increase due to the Vapor Generation at the Surface of the Melt Pool
585(1)
14.3 Conditions for Water Penetration into Melt
586(1)
14.4 Vessel Integrity during the Core Relocation Phase
587(6)
References
589(4)
15 Coolability of Layers of Molten Reactor Material
593(44)
15.1 Introduction
595(1)
15.2 Problem Definition
595(1)
15.3 System of Differential Equations Describing the Process
596(12)
15.3.1 Simplifying Assumptions
596(1)
15.3.2 Mass Conservation
597(2)
15.3.3 Gas Release and Gas Volume Faction
599(1)
15.3.4 Viscous Layer
600(2)
15.3.5 Crust Formation
602(2)
15.3.6 Melt Energy Conservation
604(2)
15.3.7 Buoyancy Driven Convection
606(1)
15.3.8 Film Boiling
607(1)
15.4 Heat Conducting Structures
608(5)
15.4.1 Heat Conduction through the Structures
608(1)
15.4.2 Boundary Conditions
609(1)
15.4.3 Oxide Crust Formation on Colder Heat Conducting Structures
610(3)
15.5 Metal Layer
613(1)
15.6 Test Case
614(5)
15.6.1 Oxide over Metal
614(3)
15.6.2 Oxide besides Metal
617(1)
15.6.3 Practical Use of the Method
618(1)
15.7 Gravitational Flooding of Hot Solid Horizontal Surface by Water
619(12)
15.7.1 Simplifying Assumptions
620(2)
15.7.2 Conservation of Mass and Momentum, Scaling
622(3)
15.7.3 Eigen Values, Eigen Vectors and Canonical Forms
625(4)
15.7.4 Steady State
629(2)
15.8 Nomenclature
631(2)
15.9 Nomenclature to Sect. 15.7
633(4)
References
635(2)
16 External Cooling of Reactor Vessels during Severe Accident
637(54)
16.1 Introduction
637(1)
16.2 State of the Art
638(2)
16.3 Dry Core Melting Scenario, Melt Relocation, Wall Attack, Focusing Effect
640(1)
16.4 Model Assumptions and Brief Model Description
641(24)
16.4.1 Molten Pool Behavior
642(1)
16.4.2 Two Dimensional Heat Conduction through the Vessel Wall
643(1)
16.4.3 Boundary Conditions
644(2)
16.4.4 Total Heat Flow from the Pools into the Vessel Wall
646(1)
16.4.5 Vessel Wall Ablation
647(1)
16.4.6 Heat Fluxes and Crust Formation
648(1)
16.4.7 Buoyancy Convection
649(16)
16.5 Critical Heat Flux
665(6)
16.6 Application Examples of the Model
671(8)
16.6.1 The Effect of Vessel Diameter
671(1)
16.6.2 The Effect of the Lower Head Radius
672(1)
16.6.3 The Effect of the Relocation Time
673(1)
16.6.4 The Effect of the Mass of the Internal Structures
674(1)
16.6.5 Some Important Parameters Characterizing the Process
674(4)
16.6.6 Can External Cooling Be Used for Very High Powered PWRs?
678(1)
16.7 Nomenclature
679(12)
References
681(5)
Appendix 1 Some Geometrical Relations
686(5)
17 Thermo-Physical Properties for Severe Accident Analysis
691(176)
17.1 Introduction
693(7)
17.1.1 Summary of the Properties at the Melting Line at Atmospheric Pressure
693(2)
17.1.2 Approximation of the Liquid State of Melts
695(3)
17.1.3 Nomenclature
698(2)
17.2 Uranium Dioxide Caloric and Transport Properties
700(19)
17.2.1 Solid
701(8)
17.2.2 Liquid
709(8)
17.2.3 Vapor
717(2)
17.3 Zirconium Dioxide
719(8)
17.3.1 Solid
719(5)
17.3.2 Liquid
724(3)
17.4 Stainless Steel
727(15)
17.4.1 Solid
727(7)
17.4.2 Liquid
734(6)
17.4.3 Vapor
740(2)
17.5 Zirconium
742(10)
17.5.1 Solid
742(6)
17.5.2 Liquid
748(4)
17.6 Aluminum
752(7)
17.6.1 Solid
752(2)
17.6.2 Liquid
754(5)
17.7 Aluminum Oxide, Al2O3
759(10)
17.7.1 Solid
760(6)
17.7.2 Liquid
766(3)
17.8 Silicon Dioxide
769(9)
17.8.1 Solid
770(5)
17.8.2 Liquid
775(3)
17.9 Iron Oxide
778(8)
17.9.1 Solid
779(2)
17.9.2 Liquid
781(5)
17.10 Molybdenum
786(7)
17.10.1 Solid
786(4)
17.10.2 Liquid
790(3)
17.11 Boron Oxide
793(8)
17.11.1 Solid
793(2)
17.11.2 Liquid
795(6)
17.12 Reactor Corium
801(6)
17.12.1 Liquid
804(2)
17.12.2 Solid
806(1)
17.13 Sodium
807(43)
17.13.1 Some Basic Characteristics
808(4)
17.13.2 Liquid
812(17)
17.13.3 Vapor
829(20)
Appendix 1
849(1)
17.14 Lead, Bismuth and Lead-Bismuth Eutectic Alloy
850(17)
References
856(11)
18 Containment Thermal-Hydraulics
867
18.1 Simple Lumped-Parameter Model
868
18.1.1 High Pressure Volume
868(1)
18.1.2 Discharge Mechanism
869(1)
18.1.3 Containment
869(6)
Conclusions
875(1)
References
876
Subject Index 379