Muutke küpsiste eelistusi

E-raamat: Multiple Classifier Systems: 7th International Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 4472
  • Ilmumisaeg: 21-Jun-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540725237
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 4472
  • Ilmumisaeg: 21-Jun-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540725237
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These proceedings are a record of the Multiple Classi er Systems Workshop, MCS 2007, held at the Institute of Information Theory and Automation, Czech Academy of Sciences, Prague in May 2007. Being the seventh in a well-established series of meetings providing an international forum for the discussion of issues in multiple classi er system design, the workshop achieved its objective of bringing together researchers from diverse communities (neural networks, pattern rec- nition, machine learning and statistics) concerned with this research topic. From more than 80 submissions, the Programme Committee selected 49 - pers to create an interesting scienti c programme. The special focus of MCS 2007 was on the application of multiple classi er systems in biometrics. This part- ular application area exercises all aspects of multiple classi er fusion, from - tramodal classi er combination, through con dence-based fusion, to multimodal biometric systems. The sponsorship of MCS 2007 by the European Union N- work of Excellence in Biometrics BioSecure and in Multimedia Understanding through Semantics, Computation and Learning MUSCLE and their assistance in selecting the contributions to the MCS 2007 programme consistent with this theme is gratefully acknowledged.
Kernel-Based Fusion
Combining Pattern Recognition Modalities at the Sensor Level Via Kernel Fusion
1(12)
Vadim Mottl
Alexander Tatarchuk
Valentina Sulimova
Olga Krasotkina
Oleg Seredin
The Neutral Point Method for Kernel-Based Combination of Disjoint Training Data in Multi-modal Pattern Recognition
13(9)
David Windridge
Vadim Mottl
Alexander Tatarchuk
Andrey Eliseyev
Kernel Combination Versus Classifier Combination
22(10)
Wan-Jui Lee
Sergey Verzakov
Robert P. W. Duin
Deriving the Kernel from Training Data
32(10)
Stefano Merler
Giuseppe Jurman
Cesare Furlanello
Applications
On the Application of SVM-Ensembles Based on Adapted Random Subspace Sampling for Automatic Classification of NMR Data
42(10)
Kai Lienemann
Thomas Plotz
Gernot A. Fink
A New HMM-Based Ensemble Generation Method for Numeral Recognition
52(10)
Albert Hung-Ren Ko
Robert Sabourin
Alceu de Souza Britto Jr.
Classifiers Fusion in Recognition of Wheat Varieties
62(10)
Sarunas Raudys
Omer Kaan Baykan
Ahmet Babalik
Vitalij Denisov
Antanas Andrius Bielskis
Multiple Classifier Methods for Offline Handwritten Text Line Recognition
72(10)
Roman Bertolami
Horst Bunke
Applying Data Fusion Methods to Passage Retrieval in QAS
82(11)
Hans Ulrich Christensen
Daniel Ortiz-Arroyo
A Co-training Approach for Time Series Prediction with Missing Data
93(10)
Tawfik A. Mohamed
Neamat El Gayar
Amir F. Atiya
An Improved Random Subspace Method and Its Application to EEG Signal Classification
103(10)
Shiliang Sun
Ensemble Learning Methods for Classifying EEG Signals
113(8)
Shiliang Sun
Confidence Based Gating of Colour Features for Face Authentication
121(10)
Mohammad T. Sadeghi
Samaneh Khoshrou
Josef Kittler
View-Based Eigenspaces with Mixture of Experts for View-Independent Face Recognition
131(10)
Reza Ebrahimpour
Ehsanollah Kabir
Mohammad Reza Yousefi
Fusion of Support Vector Classifiers for Parallel Gabor Methods Applied to Face Verification
141(10)
Angel Serrano
Isaac Martin de Diego
Cristina Conde
Enrique Cabello
Li Bai
Linlin Shen
Serial Fusion of Fingerprint and Face Matchers
151(10)
Gian Luca Marcialis
Fabio Roli
Boosting
Boosting Lite -- Handling Larger Datasets and Slower Base Classifiers
161(10)
Lawrence O. Hall
Robert E. Banfield
Kevin W. Bowyer
W. Philip Kegelmeyer
Information Theoretic Combination of Classifiers with Application to AdaBoost
171(9)
Julien Meynet
Jean-Philippe Thiran
Interactive Boosting for Image Classification
180(10)
Yijuan Lu
Qi Tian
Thomas S. Huang
Cluster and Graph Ensembles
Group-Induced Vector Spaces
190(10)
Manuele Bicego
Elzbieta Pekalska
Robert P. W. Duin
Selecting Diversifying Heuristics for Cluster Ensembles
200(10)
Stefan T. Hadjitodorov
Ludmila I. Kuncheva
Unsupervised Texture Segmentation Using Multiple Segmenters Strategy
210(10)
Michal Haindl
Stanislav Mikes
Classifier Ensembles for Vector Space Embedding of Graphs
220(11)
Kaspar Riesen
Horst Bunke
Cascading for Nominal Data
231(10)
Jesus Maudes
Juan J. Rodriguez
Cesar Garcia-Osorio
Feature Subspace Ensembles
A Combination of Sample Subsets and Feature Subsets in One-Against-Other Classifiers
241(10)
Mineichi Kudo
Satoshi Shirai
Hiroshi Tenmoto
Random Feature Subset Selection for Ensemble Based Classification of Data with Missing Features
251(10)
Joseph DePasquale
Robi Polikar
Feature Subspace Ensembles: A Parallel Classifier Combination Scheme Using Feature Selection
261(10)
Hugo Silva
Ana Fred
Stopping Criteria for Ensemble-Based Feature Selection
271(11)
Terry Windeatt
Matthew Prior
Multiple Classifier System Theory
On Rejecting Unreliably Classified Patterns
282(10)
Pasquale Foggia
Gennaro Percannella
Carlo Sansone
Mario Vento
Bayesian Analysis of Linear Combiners
292(10)
Battista Biggio
Giorgio Fumera
Fabio Roli
Applying Pairwise Fusion Matrix on Fusion Functions for Classifier Combination
302(10)
Albert Hung-Ren Ko
Robert Sabourin
Alceu de Souza Britto Jr.
Modelling Multiple-Classifier Relationships Using Bayesian Belief Networks
312(10)
Samuel Chindaro
Konstantinos Sirlantzis
Michael Fairhurst
Classifier Combining Rules Under Independence Assumptions
322(11)
Shoushan Li
Chengqing Zong
Embedding Reject Option in ECOC Through LDPC Codes
333(11)
Claudio Marrocco
Paolo Simeone
Francesco Tortorella
Intramodal and Multimodal Fusion of Biometric Experts
On Combination of Face Authentication Experts by a Mixture of Quality Dependent Fusion Classifiers
344(13)
Norman Poh
Guillaume Heusch
Josef Kittler
Index Driven Combination of Multiple Biometric Experts for AUC Maximisation
357(10)
Roberto Tronci
Giorgio Giacinto
Fabio Roli
Q -- stack: Uni- and Multimodal Classifier Stacking with Quality Measures
367(10)
Krzysztof Kryszczuk
Andrzej Drygajlo
Reliability-Based Voting Schemes Using Modality-Independent Features in Multi-classifier Biometric Authentication
377(10)
Jonas Richiardi
Andrzej Drygajlo
Optimal Classifier Combination Rules for Verification and Identification Systems
387(10)
Sergey Tulyakov
Venu Govindaraju
Chaohong Wu
Majority Voting
Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets
397(10)
Nitesh V. Chawla
Jared Sylvester
On the Diversity-Performance Relationship for Majority Voting in Classifier Ensembles
407(14)
Yun-Sheng Chung
D. Frank Hsu
Chuan Yi Tang
Hierarchical Behavior Knowledge Space
421(10)
Hubert Cecotti
Abdel Belaid
Ensemble Learning
A New Dynamic Ensemble Selection Method for Numeral Recognition
431(9)
Albert Hung-Ren Ko
Robert Sabourin
Alceu de Souza Britto Jr.
Ensemble Learning in Linearly Combined Classifiers Via Negative Correlation
440(10)
Manuela Zanda
Gavin Brown
Giorgio Fumera
Fabio Roli
Naive Bayes Ensembles with a Random Oracle
450(9)
Juan J. Rodriguez
Ludmila I. Kuncheva
An Experimental Study on Rotation Forest Ensembles
459(10)
Ludmila I. Kuncheva
Juan J. Rodriguez
Cooperative Coevolutionary Ensemble Learning
469(10)
Daniel Kanevskiy
Konstantin Vorontsov
Robust Inference in Bayesian Networks with Application to Gene Expression Temporal Data
479(11)
Omer Berkman
Nathan Intrator
An Ensemble Approach for Incremental Learning in Nonstationary Environments
490(11)
Michael D. Muhlbaier
Robi Polikar
Invited Papers
Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments
501(12)
Jon Atli Benediktsson
Jocelyn Chanussot
Mathieu Fauvel
Biometric Person Authentication Is a Multiple Classifier Problem
513(10)
Samy Bengio
Johnny Mariethoz
Author Index 523