Preface |
|
xi | |
|
|
1 | (32) |
|
|
1 | (1) |
|
1.2 Definition of a Missing Value |
|
|
1 | (1) |
|
1.3 Patterns of Missing Data |
|
|
2 | (1) |
|
1.4 Missing Data Mechanisms |
|
|
3 | (2) |
|
|
5 | (4) |
|
1.6 General Framework for Imputation |
|
|
9 | (1) |
|
1.7 Sequential Regression Multivariate Imputation (SRMI) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.10 Three-variable Example |
|
|
14 | (5) |
|
|
14 | (1) |
|
1.10.2 Joint Model Approach |
|
|
14 | (4) |
|
1.10.3 Comparison of Approaches |
|
|
18 | (1) |
|
1.10.4 Alternative Modeling Strategies |
|
|
18 | (1) |
|
1.11 Complex Sample Surveys |
|
|
19 | (1) |
|
1.12 Imputation Diagnostics |
|
|
20 | (2) |
|
1.12.1 Propensity Based Comparison |
|
|
21 | (1) |
|
1.12.2 Synthetic Data Approach |
|
|
21 | (1) |
|
1.13 Should We Impute or Not? |
|
|
22 | (1) |
|
1.14 Is Imputation Making Up Data? |
|
|
23 | (1) |
|
1.15 Multiple Imputation Analysis |
|
|
24 | (2) |
|
1.15.1 Point and Interval Estimates |
|
|
24 | (1) |
|
1.15.2 Multivariate Hypothesis Tests |
|
|
24 | (1) |
|
1.15.3 Combining Test Statistics |
|
|
25 | (1) |
|
1.16 Multiple Imputation Theory |
|
|
26 | (3) |
|
1.17 Number of Imputations |
|
|
29 | (1) |
|
|
30 | (3) |
|
|
33 | (12) |
|
|
33 | (2) |
|
|
35 | (3) |
|
2.2.1 Imputation of the NHANES 2011-2012 Data Set |
|
|
35 | (3) |
|
|
38 | (3) |
|
2.3.1 Continuous Variable |
|
|
38 | (2) |
|
|
40 | (1) |
|
2.4 Practical Considerations |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (3) |
|
|
45 | (18) |
|
|
45 | (1) |
|
3.2 Complete Data Inference |
|
|
46 | (2) |
|
|
46 | (2) |
|
|
48 | (1) |
|
3.3 Comparing Blocks of Variables |
|
|
48 | (1) |
|
|
49 | (1) |
|
3.5 Multiple Imputation Analysis |
|
|
50 | (2) |
|
3.5.1 Combining Point Estimates |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (6) |
|
|
52 | (1) |
|
3.6.2 Parameter Estimation |
|
|
53 | (2) |
|
3.6.3 Multivariate Hypothesis Testing |
|
|
55 | (2) |
|
3.6.4 Combining F-statistics |
|
|
57 | (1) |
|
3.6.5 Computation of R2 and Adjusted R2 |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (4) |
|
4 Generalized Linear Model |
|
|
63 | (16) |
|
|
63 | (1) |
|
4.2 Multiple Imputation Analysis |
|
|
64 | (9) |
|
|
65 | (1) |
|
|
65 | (2) |
|
4.2.1.2 Parameter Estimates |
|
|
67 | (1) |
|
4.2.1.3 Testing for Block of Covariates |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (2) |
|
4.2.3 Multinomial Logit Model |
|
|
71 | (1) |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (5) |
|
5 Categorical Data Analysis |
|
|
79 | (20) |
|
5.1 Contingency Table Analysis |
|
|
79 | (1) |
|
|
80 | (2) |
|
5.3 Three-way Contingency Table |
|
|
82 | (1) |
|
|
83 | (1) |
|
5.5 Two-way Contingency Table |
|
|
83 | (5) |
|
5.5.1 Chi-square Analysis |
|
|
85 | (2) |
|
5.5.2 Log-linear Model Analysis |
|
|
87 | (1) |
|
5.6 Three-way Contingency Table |
|
|
88 | (7) |
|
|
88 | (4) |
|
5.6.2 Weighted Least Squares |
|
|
92 | (3) |
|
|
95 | (1) |
|
|
96 | (3) |
|
|
99 | (12) |
|
|
99 | (1) |
|
6.2 Multiple Imputation Analysis |
|
|
100 | (6) |
|
6.2.1 Proportional Hazards Model |
|
|
101 | (1) |
|
6.2.1.1 Outcome Imputed (Method 1) |
|
|
101 | (1) |
|
6.2.1.2 Outcome Not Imputed (Method 2) |
|
|
102 | (3) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (4) |
|
7 Structural Equation Models |
|
|
111 | (10) |
|
|
111 | (2) |
|
|
113 | (2) |
|
7.3 Multiple Imputation Analysis |
|
|
115 | (2) |
|
|
117 | (1) |
|
|
117 | (4) |
|
8 Longitudinal Data Analysis |
|
|
121 | (28) |
|
|
121 | (2) |
|
8.2 Example 1: Binary Outcome |
|
|
123 | (3) |
|
8.3 Example 2: Continuous Outcome |
|
|
126 | (5) |
|
8.4 Example 3: A Case Study |
|
|
131 | (13) |
|
|
132 | (8) |
|
|
140 | (4) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
146 | (3) |
|
9 Complex Survey Data Analysis using BBDESIGN |
|
|
149 | (14) |
|
|
149 | (2) |
|
|
151 | (10) |
|
|
151 | (9) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (2) |
|
|
163 | (18) |
|
|
163 | (1) |
|
10.2 Pattern-Mixture Model |
|
|
164 | (2) |
|
|
166 | (10) |
|
10.3.1 Bivariate Example: Continuous Variable |
|
|
166 | (4) |
|
|
170 | (3) |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
177 | (4) |
|
|
181 | (26) |
|
|
181 | (1) |
|
11.2 Imputation and Analysis Models |
|
|
182 | (2) |
|
|
183 | (1) |
|
11.3 Running Simulations Using IV Eware |
|
|
184 | (5) |
|
11.4 Congeniality and Multiple Imputations |
|
|
189 | (3) |
|
11.4.1 Example of Impact of Uncongeniality |
|
|
190 | (2) |
|
11.5 Combining Bayesian Inferences |
|
|
192 | (6) |
|
11.5.1 Example of Combining Bayesian Inferences |
|
|
195 | (3) |
|
11.6 Imputing Interactions |
|
|
198 | (5) |
|
|
198 | (1) |
|
11.6.2 Code for Simulation Study |
|
|
199 | (4) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (2) |
|
|
207 | (20) |
|
A.1 St. Louis Risk Research Project |
|
|
207 | (1) |
|
A.2 Primary Biliary Cirrhosis Data Set |
|
|
208 | (3) |
|
A.3 Opioid Detoxification Data Set |
|
|
211 | (1) |
|
A.4 American Changing Lives (ACL) Data Set |
|
|
212 | (1) |
|
A.5 National Comorbidity Survey Replication (NCS-R) |
|
|
212 | (2) |
|
A.6 National Health and Nutrition Examination Survey, 2011-2012 (NHANES 2011-2012) |
|
|
214 | (5) |
|
A.7 Health and Retirement Study, 2012 (HRS 2012) |
|
|
219 | (1) |
|
A.8 Case Control Data for Omega-3 Fatty Acids and Primary Cardiac Arrest |
|
|
220 | (3) |
|
A.9 National Merit Twin Study |
|
|
223 | (1) |
|
A.10 European Social Survey-Russian Federation |
|
|
224 | (1) |
|
A.11 Outline of Analysis Examples and Data Sets |
|
|
224 | (3) |
|
|
227 | (6) |
|
|
227 | (1) |
|
|
228 | (2) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (3) |
Bibliography |
|
233 | (14) |
Index |
|
247 | |