Muutke küpsiste eelistusi

E-raamat: Multiplicity-free Representations of Algebraic Groups

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V), where H is a proper connected subgroup of G, and V is a finite-dimensional irreducible G-module such that the restriction of V to H is multiplicity-free -- that is, each of its composition factors appears with multiplicity 1. A great deal of classical work, going back to Dynkin, Howe, Kac, Stembridge, Weyl and others, and also more recent work of the authors, can be set in this context. In this paper we determine all such triples in the case where H and G are both simple algebraic groups of type A, and H is embedded irreducibly in G. While there are a number of interesting familes of such triples (G, H, V), the possibilities for the highest weights of the representations defining the embeddings H < G and G < GL(V) are very restricted. For example, apart from two exceptional cases, both weights can only have support on at most two fundamental weights; and in many of the examples, one or other of the weights corresponds to the alternating or symmetric square of the natural module for either G or H.
1. Introduction
2. Notation
3. Level set-up
4. Results from the Literature
5. Composition Factors In Levels
6. Multiplicity-free families
7. Initial Lemmas
8. The case $X = A_2$
9. The case $\delta = r\omega _k$ with $r,k\ge 2$
10. The case $\delta = r\omega _1$, $r\ge 2$
11. The case $\delta = \omega _i$ with $i\ge 3$
12. The case $\delta = \omega _2$
13. The case $\delta = \omega _1+\omega _{l+1}$
14. Proof of Theorem , Part I: $V_{C^i}(\mu ^i)$ is usually trivial
15. Proof of Theorem , Part II: $\mu ^0$ is not inner
16. Proof of Theorem , Part III: $\langle \lambda , \gamma \rangle = 0$
17. Proof of Theorem , Part IV: Completion
Martin W. Liebeck, Imperial College, London, United Kingdom.

Gary M. Seitz, University of Oregon, Eugene, Oregon.

Donna M. Testerman, Ecole Polytechnique Federale de Lausanne, Switzerland.