Contributors |
|
xi | |
Preface |
|
xiii | |
|
Chapter 1 The multiscale nature of the brain and traumatic brain injury |
|
|
7 | (20) |
|
|
|
|
1 | (1) |
|
1.2 The brain's multiscale structure |
|
|
2 | (11) |
|
|
3 | (5) |
|
|
8 | (5) |
|
1.3 The multiscale nature of TBI |
|
|
13 | (8) |
|
1.3.1 Multiscale injury mechanisms |
|
|
14 | (1) |
|
|
15 | (1) |
|
1.3.3 Examples of injuries |
|
|
16 | (1) |
|
1.3.4 Neurobehavioral sequelae |
|
|
17 | (1) |
|
1.3.5 TBI research methods |
|
|
18 | (3) |
|
|
21 | (6) |
|
|
21 | (6) |
|
Chapter 2 Introduction to multiscale modeling of the human brain |
|
|
27 | (12) |
|
|
|
|
27 | (1) |
|
2.2 Constitutive modeling of the brain |
|
|
27 | (5) |
|
2.3 Brain tissue experiments used for constitutive modeling calibration |
|
|
32 | (1) |
|
2.4 Modeling summary of upcoming chapters in the book |
|
|
33 | (1) |
|
|
34 | (5) |
|
|
34 | (5) |
|
Chapter 3 Density functional theory and bridging to classical interatomic force fields |
|
|
39 | (14) |
|
|
|
|
|
|
|
|
39 | (3) |
|
3.1.1 Why quantum mechanics? |
|
|
39 | (2) |
|
3.1.2 Physical chemistry of biomechanical systems |
|
|
41 | (1) |
|
3.2 Density functional theory |
|
|
42 | (1) |
|
3.3 Downscaling requirements of classical force field atomistic models |
|
|
43 | (3) |
|
3.3.1 Upscaling properties |
|
|
44 | (2) |
|
3.4 Sample atomistic force fields formalism and development of an interatomic potential for hydrocarbons |
|
|
46 | (4) |
|
|
46 | (1) |
|
3.4.2 Calibration of the MEAMBO potential |
|
|
47 | (1) |
|
3.4.3 Parameterization of the interatomic potential |
|
|
48 | (1) |
|
3.4.4 Validation of the interatomic force fields |
|
|
49 | (1) |
|
|
50 | (3) |
|
|
51 | (2) |
|
Chapter 4 Modeling nanoscale cellular structures using molecular dynamics |
|
|
53 | (24) |
|
|
|
|
|
53 | (4) |
|
|
57 | (12) |
|
4.2.1 Molecular dynamics simulation method |
|
|
57 | (1) |
|
4.2.2 Atomic force fields |
|
|
57 | (2) |
|
4.2.3 Simulation ensembles of atoms |
|
|
59 | (1) |
|
4.2.4 Boundary conditions |
|
|
60 | (3) |
|
4.2.5 Current simulation details |
|
|
63 | (1) |
|
4.2.6 Molecular dynamics analysis methods for the phospholipid bilayer (neuron membrane) |
|
|
64 | (5) |
|
4.3 Results and discussion for the phospholipid bilayer (neuron membrane) |
|
|
69 | (3) |
|
4.3.1 Stress-strain and damage response |
|
|
70 | (1) |
|
4.3.2 Membrane failure limit diagram |
|
|
70 | (2) |
|
|
72 | (5) |
|
|
73 | (1) |
|
|
73 | (4) |
|
Chapter 5 Microscale mechanical modeling of brain neuron(s) and axon(s) |
|
|
77 | (8) |
|
|
|
|
|
77 | (1) |
|
5.2 Modeling microscale neurons |
|
|
78 | (3) |
|
|
79 | (2) |
|
5.2.2 Modeling mechanical behavior of axons |
|
|
81 | (1) |
|
|
81 | (4) |
|
|
82 | (3) |
|
Chapter 6 Mesoscale finite element modeling of brain structural heterogeneities and geometrical complexities |
|
|
85 | (18) |
|
|
|
|
|
|
|
85 | (2) |
|
6.1.1 Modeling length scale |
|
|
86 | (1) |
|
|
87 | (6) |
|
6.2.1 Computational methods for properties |
|
|
87 | (5) |
|
6.2.2 Model validation and boundary conditions |
|
|
92 | (1) |
|
6.3 Results and discussion |
|
|
93 | (7) |
|
6.3.1 Geometrical complexities |
|
|
94 | (6) |
|
|
100 | (3) |
|
|
101 | (2) |
|
Chapter 7 Modeling mesoscale anatomical structures in macroscale brain finite element models |
|
|
103 | (16) |
|
|
|
|
|
|
103 | (1) |
|
7.2 Macroscale brain finite element model |
|
|
103 | (2) |
|
7.3 Mesoscale anatomical structures and imaging techniques |
|
|
105 | (2) |
|
7.4 The importance of structural anisotropy in macroscale models of TBI |
|
|
107 | (1) |
|
7.5 Material-based method |
|
|
108 | (1) |
|
7.6 Structure-based method |
|
|
109 | (1) |
|
7.7 Summary and future perspectives |
|
|
110 | (9) |
|
|
113 | (6) |
|
Chapter 8 A macroscale mechano-physiological internal state variable (MPISV) model for neuronal membrane damage with subscale microstructural effects |
|
|
119 | (20) |
|
|
|
|
|
|
|
119 | (2) |
|
|
120 | (1) |
|
|
121 | (1) |
|
8.3 Development of damage evolution equation |
|
|
122 | (4) |
|
8.3.1 Pore number density rate |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (1) |
|
8.4 Garnering data from molecular dynamics simulations |
|
|
126 | (1) |
|
8.5 Calibration of the mechano-physiological internal state variable damage rate equations |
|
|
127 | (1) |
|
8.6 Sensitivity analysis of damage model at this length scale |
|
|
128 | (1) |
|
8.7 Comparison of model with cell culture studies |
|
|
129 | (4) |
|
|
133 | (2) |
|
|
135 | (4) |
|
|
135 | (4) |
|
Chapter 9 MRE-based modeling of head trauma |
|
|
139 | (14) |
|
|
|
|
139 | (1) |
|
|
140 | (4) |
|
9.2.1 MRE acquisition and inversion |
|
|
140 | (1) |
|
9.2.2 Finite element mesh generation |
|
|
141 | (2) |
|
9.2.3 Material properties |
|
|
143 | (1) |
|
9.2.4 Experimental verification |
|
|
144 | (1) |
|
9.3 Results and discussion |
|
|
144 | (6) |
|
|
150 | (3) |
|
|
150 | (3) |
|
Chapter 10 Robust concept exploration of driver's side vehicular impacts for human-centric crashworthiness |
|
|
153 | (24) |
|
|
|
|
|
|
153 | (2) |
|
|
155 | (1) |
|
10.3 Adapted CEF for robust concept exploration |
|
|
156 | (2) |
|
10.4 Head and neck injury criteria-based robust design of vehicular impacts |
|
|
158 | (13) |
|
10.4.1 Clarification of design task-Step A |
|
|
158 | (1) |
|
10.4.2 Design of experiments-Step B |
|
|
159 | (1) |
|
10.4.3 Finite element car crash simulations for predicting injury response-Step C |
|
|
160 | (2) |
|
10.4.4 Building surrogate models-Step D |
|
|
162 | (2) |
|
10.4.5 Formulation of robust design cDSP-Step E |
|
|
164 | (4) |
|
10.4.6 Formulating the design scenarios, exercising the cDSP and exploration of solution space-Step E |
|
|
168 | (3) |
|
10.5 Future: correlate human brain injury to vehicular damage |
|
|
171 | (1) |
|
|
172 | (5) |
|
|
172 | (5) |
|
Chapter 11 Development of a coupled physical-computational methodology for the investigation of infant head injury |
|
|
177 | (16) |
|
|
|
|
|
177 | (4) |
|
|
181 | (5) |
|
11.2.1 Pediatric head development |
|
|
181 | (1) |
|
11.2.2 Material properties |
|
|
182 | (2) |
|
|
184 | (1) |
|
11.2.4 Boundary and loading conditions |
|
|
184 | (1) |
|
11.2.5 Global validation of the FE-head against PMHS |
|
|
185 | (1) |
|
11.2.6 Global, regional, and local validation of the FE-head against the physical model |
|
|
185 | (1) |
|
11.2.7 Statistical analysis |
|
|
185 | (1) |
|
11.3 Results and discussion |
|
|
186 | (5) |
|
11.3.1 Global validation of the FE-head versus the postmortem human surrogate |
|
|
186 | (1) |
|
11.3.2 Global validation of the FE-head versus the physical model |
|
|
187 | (1) |
|
11.3.3 FE-head regional and local validation versus the physical model |
|
|
188 | (2) |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
191 | (2) |
|
Chapter 12 Experimental data for validating the structural response of computational brain models |
|
|
193 | (16) |
|
|
|
|
|
|
|
|
193 | (2) |
|
|
195 | (8) |
|
12.2.1 Experimental brain pressure measurements |
|
|
195 | (1) |
|
12.2.2 Experimental brain deformation measurements |
|
|
196 | (7) |
|
12.3 Challenges and limitations |
|
|
203 | (2) |
|
12.4 Summary and future perspectives |
|
|
205 | (4) |
|
|
206 | (3) |
|
Chapter 13 A review of fluid flow in and around the brain, modeling, and abnormalities |
|
|
209 | (30) |
|
|
|
|
|
|
209 | (1) |
|
|
209 | (2) |
|
13.2.1 Ventricular system |
|
|
209 | (1) |
|
13.2.2 Ventricles and subarachnoid space |
|
|
210 | (1) |
|
13.3 Characteristic numbers |
|
|
211 | (2) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
212 | (1) |
|
13.4 Common brain flow abnormalities |
|
|
213 | (3) |
|
13.4.1 Misfolded proteins |
|
|
214 | (1) |
|
|
215 | (1) |
|
13.4.3 Reduced arterial pulsatility |
|
|
215 | (1) |
|
|
215 | (1) |
|
13.4.5 Chiari malformation |
|
|
216 | (1) |
|
13.4.6 Syringomyelia and syringobulbia |
|
|
216 | (1) |
|
13.5 Boundary conditions for models |
|
|
216 | (3) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (2) |
|
13.5.5 Intracranial pressure |
|
|
219 | (1) |
|
13.6 Brain measurement and imaging |
|
|
219 | (3) |
|
13.6.1 Magnetic resonance imaging |
|
|
219 | (1) |
|
13.6.2 Spin/field/gradient echo MRI |
|
|
219 | (1) |
|
13.6.3 Phase contrast MRI |
|
|
220 | (1) |
|
|
220 | (1) |
|
13.6.5 Pressure monitoring |
|
|
221 | (1) |
|
13.6.6 MRI segmentation m |
|
|
221 | (1) |
|
|
222 | (11) |
|
13.7.1 CFD simplifications: rigid walls |
|
|
231 | (1) |
|
13.7.2 CFD simplifications: microstructures |
|
|
232 | (1) |
|
|
233 | (6) |
|
|
233 | (6) |
|
Chapter 14 Resonant frequencies of a human brain, skull, and head |
|
|
239 | (16) |
|
|
|
|
|
|
|
239 | (2) |
|
14.2 Problem set-up for the finite element simulations |
|
|
241 | (2) |
|
|
243 | (4) |
|
14.3.1 Whole head: fundamental frequency and mode shapes |
|
|
244 | (1) |
|
14.3.2 Brain: fundamental frequency and mode shapes |
|
|
244 | (3) |
|
|
247 | (4) |
|
|
251 | (4) |
|
|
252 | (3) |
|
Chapter 15 State-of-the-art of multiscale modeling of mechanical impacts to the human brain |
|
|
255 | (4) |
|
|
|
255 | (1) |
|
15.2 Work to be completed |
|
|
255 | (3) |
|
15.2.1 Multiphy sics aspects of the brain |
|
|
255 | (1) |
|
15.2.2 Multiscale structure-property relationships of the brain |
|
|
255 | (1) |
|
15.2.3 Different biological effects on the brain |
|
|
256 | (1) |
|
15.2.4 The liquid-solid aspects of the brain |
|
|
257 | (1) |
|
15.2.5 Different human ages |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
Index |
|
259 | |