Muutke küpsiste eelistusi

E-raamat: Multiscale Finite Element Methods: Theory and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi ed later in the last chapter. Numerical examples demonstrating the signi cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.

Arvustused

From the reviews:

This book describes the main concepts and various applications of the multiscale finite element method (MsFEM). This monograph is intended for engineers, graduate students, and applied scientists who are interested in multiscale simulations. In this book, the authors chose to focus on the extensions of MsFEM and its applications. Overall, the book is an interesting read presenting an overview of MsFEM and the wide range of applications handled by MsFEM. (Ulrich Hetmaniuk, SIAM Review, Vol. 53 (2), 2011)

Introduction
1(12)
Challenges and motivation
1(5)
Literature review
6(4)
Overview of the content of the book
10(3)
Multiscale finite element methods for linear problems and overview
13(34)
Summary
13(1)
Introduction to multiscale finite element methods
13(7)
Reducing boundary effects
20(3)
Motivation
20(2)
Oversampling technique
22(1)
Generalization of MsFEM: A look forward
23(2)
Brief overview of various global couplings of multiscale basis functions
25(6)
Multiscale finite volume (MsFV) and multiscale finite volume element method (MsFVEM)
25(2)
Mixed multiscale finite element method
27(4)
MsFEM for problems with scale separation
31(2)
Extension of MsFEM to parabolic problems
33(1)
Comparison to other multiscale methods
34(4)
Performance and implementation issues
38(3)
Cost and performance
39(1)
Convergence and accuracy
40(1)
Coarse-grid choice
41(1)
An application to two-phase flow
41(4)
Discussions
45(2)
Multiscale finite element methods for nonlinear equations
47(20)
MsFEM for nonlinear problems. Introduction
47(5)
Multiscale finite volume element method (MsFVEM)
52(1)
Examples of Ph
53(1)
Relation to upscaling methods
54(1)
Multiscale finite element methods for nonlinear parabolic equations
55(3)
Summary of convergence of MsFEM for nonlinear partial differential equations
58(1)
Numerical results
59(6)
Discussions
65(2)
Multiscale finite element methods using limited global information
67(28)
Motivation
67(4)
A motivating numerical example
69(2)
Mixed multiscale finite element methods using limited global information
71(13)
Elliptic equations
71(2)
Parabolic equations
73(2)
Numerical results
75(9)
Galerkin multiscale finite element methods using limited global information
84(5)
A special case
84(1)
General case
85(1)
Numerical results
86(3)
The use of approximate global information
89(3)
Iterative MsFEM
90(1)
The use of approximate global information
91(1)
Discussions
92(3)
Applications of multiscale finite element methods
95(70)
Introduction
95(1)
Multiscale methods for transport equation
96(16)
Governing equations
96(1)
Adaptive multiscale algorithm for transport equation
96(3)
The coarse-to-fine grid interpolation operator
99(1)
Numerical results
100(1)
Results for a two-dimensional test case
101(3)
Three-dimensional test cases
104(3)
Discussion on local boundary conditions
107(1)
Other approaches for coarsening the transport equation
107(5)
Summary
112(1)
Applications to Richards' equation
112(7)
Problem statement
112(1)
MsFVEM for Richards' equations
113(2)
Numerical results
115(3)
Summary
118(1)
Applications to fluid-structure interaction
119(5)
Problem statement
119(1)
Multiscale numerical formulation
120(2)
Numerical examples
122(2)
Discussions
124(1)
Applications of mixed MsFEMS to reservoir modeling and simulation (by J. E. Aarnes)
124(12)
Multiscale method for the three-phase black oil model
126(3)
Adaptive coarsening of the saturation equations
129(4)
Utilization of multiscale methods for operational decision support
133(3)
Summary
136(1)
Multiscale finite volume method for black oil systems (by S. H. Lee, C. Wolfsteiner and H. A. Tchelepi)
136(10)
Governing equations and discretized formulation
137(1)
Multiscale finite volume formulation
138(4)
Sequential fully implicit coupling and adaptive computation
142(1)
Numerical examples
142(2)
Remarks
144(2)
Applications of multiscale finite element methods to stochastic flows in heterogeneous media
146(17)
Multiscale methods for stochastic equations
148(12)
The applications of MsFEMS to uncertainty quantification in inverse problems
160(3)
Discussions
163(2)
Analysis
165
Analysis of MsFEMS for linear problems (from
Chapter 2)
166
Analysis of conforming multiscale finite element methods
166
Analysis of nonconforming multiscale finite element methods
171
Analysis of mixed multiscale finite element methods
173
Analysis of MsFEMs for nonlinear problems (from
Chapter 3)
178
Analysis for MsFEMS with limited global information (from
Chapter 4)
187
Mixed finite element methods with limited global information
187
Galerkin finite element methods with limited global information
198
A Basic notations
203