Preface |
|
xiii | |
|
|
xv | |
|
|
xix | |
|
|
xxi | |
|
|
1 | (10) |
|
1.1 Exploratory data analysis with density estimation |
|
|
1 | (3) |
|
1.2 Exploratory data analysis with density derivatives estimation |
|
|
4 | (1) |
|
1.3 Clustering/unsupervised learning |
|
|
5 | (1) |
|
1.4 Classification/supervised learning |
|
|
6 | (1) |
|
1.5 Suggestions on how to read this monograph |
|
|
7 | (4) |
|
|
11 | (32) |
|
2.1 Histogram density estimation |
|
|
11 | (3) |
|
2.2 Kernel density estimation |
|
|
14 | (5) |
|
2.2.1 Probability contours as multivariate quantiles |
|
|
16 | (3) |
|
2.2.2 Contour colour scales |
|
|
19 | (1) |
|
2.3 Gains from unconstrained bandwidth matrices |
|
|
19 | (4) |
|
2.4 Advice for practical bandwidth selection |
|
|
23 | (3) |
|
2.5 Squared error analysis |
|
|
26 | (4) |
|
2.6 Asymptotic squared error formulas |
|
|
30 | (5) |
|
|
35 | (1) |
|
2.8 Convergence of density estimators |
|
|
36 | (1) |
|
2.9 Further mathematical analysis of density estimators |
|
|
37 | (6) |
|
2.9.1 Asymptotic expansion of the mean integrated squared error |
|
|
37 | (2) |
|
2.9.2 Asymptotically optimal bandwidth |
|
|
39 | (1) |
|
2.9.3 Vector versus vector half parametrisations |
|
|
40 | (3) |
|
3 Bandwidth selectors for density estimation |
|
|
43 | (24) |
|
3.1 Normal scale bandwidths |
|
|
44 | (1) |
|
3.2 Maximal smoothing bandwidths |
|
|
45 | (1) |
|
3.3 Normal mixture bandwidths |
|
|
46 | (1) |
|
3.4 Unbiased cross validation bandwidths |
|
|
46 | (3) |
|
3.5 Biased cross validation bandwidths |
|
|
49 | (1) |
|
|
49 | (3) |
|
3.7 Smoothed cross validation bandwidths |
|
|
52 | (2) |
|
3.8 Empirical comparison of bandwidth selectors |
|
|
54 | (6) |
|
3.9 Theoretical comparison of bandwidth selectors |
|
|
60 | (1) |
|
3.10 Further mathematical analysis of bandwidth selectors |
|
|
61 | (6) |
|
3.10.1 Relative convergence rates of bandwidth selectors |
|
|
61 | (3) |
|
3.10.2 Optimal pilot bandwidth selectors |
|
|
64 | (1) |
|
3.10.3 Convergence rates with data-based bandwidths |
|
|
65 | (2) |
|
4 Modified density estimation |
|
|
67 | (22) |
|
4.1 Variable bandwidth density estimators |
|
|
67 | (6) |
|
4.1.1 Balloon density estimators |
|
|
68 | (1) |
|
4.1.2 Sample point density estimators |
|
|
69 | (1) |
|
4.1.3 Bandwidth selectors for variable kernel estimation |
|
|
70 | (3) |
|
4.2 Transformation density estimators |
|
|
73 | (3) |
|
4.3 Boundary kernel density estimators |
|
|
76 | (5) |
|
4.3.1 Beta boundary kernels |
|
|
76 | (1) |
|
4.3.2 Linear boundary kernels |
|
|
77 | (4) |
|
|
81 | (2) |
|
|
83 | (1) |
|
4.6 Further mathematical analysis of modified density estimators |
|
|
84 | (5) |
|
4.6.1 Asymptotic error for sample point variable bandwidth estimators |
|
|
84 | (2) |
|
4.6.2 Asymptotic error for linear boundary estimators |
|
|
86 | (3) |
|
5 Density derivative estimation |
|
|
89 | (38) |
|
5.1 Kernel density derivative estimators |
|
|
89 | (7) |
|
5.1.1 Density gradient estimators |
|
|
90 | (2) |
|
5.1.2 Density Hessian estimators |
|
|
92 | (1) |
|
5.1.3 General density derivative estimators |
|
|
93 | (3) |
|
5.2 Gains from unconstrained bandwidth matrices |
|
|
96 | (4) |
|
5.3 Advice for practical bandwidth selection |
|
|
100 | (2) |
|
5.4 Empirical comparison of bandwidths of different derivative orders |
|
|
102 | (1) |
|
5.5 Squared error analysis |
|
|
103 | (5) |
|
5.6 Bandwidth selection for density derivative estimators |
|
|
108 | (9) |
|
5.6.1 Normal scale bandwidths |
|
|
109 | (1) |
|
5.6.2 Normal mixture bandwidths |
|
|
110 | (1) |
|
5.6.3 Unbiased cross validation bandwidths |
|
|
111 | (1) |
|
|
112 | (3) |
|
5.6.5 Smoothed cross validation bandwidths |
|
|
115 | (2) |
|
5.7 Relative convergence rates of bandwidth selectors |
|
|
117 | (1) |
|
5.8 Case study: The normal density |
|
|
118 | (6) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.8.4 Normal scale bandwidth |
|
|
121 | (1) |
|
5.8.5 Asymptotic MSE for curvature estimation |
|
|
122 | (2) |
|
5.9 Further mathematical analysis of density derivative estimators |
|
|
124 | (3) |
|
5.9.1 Taylor expansions for vector-valued functions |
|
|
124 | (1) |
|
5.9.2 Relationship between multivariate normal moments |
|
|
124 | (3) |
|
6 Applications related to density and density derivative estimation |
|
|
127 | (28) |
|
|
127 | (8) |
|
6.1.1 Modal region and bump estimation |
|
|
129 | (3) |
|
6.1.2 Density support estimation |
|
|
132 | (3) |
|
6.2 Density-based clustering |
|
|
135 | (8) |
|
6.2.1 Stable/unstable manifolds |
|
|
136 | (1) |
|
6.2.2 Mean shift clustering |
|
|
137 | (6) |
|
6.2.3 Choice of the normalising matrix in the mean shift |
|
|
143 | (1) |
|
6.3 Density ridge estimation |
|
|
143 | (6) |
|
|
149 | (6) |
|
7 Supplementary topics in data analysis |
|
|
155 | (26) |
|
7.1 Density difference estimation and significance testing |
|
|
155 | (4) |
|
|
159 | (4) |
|
7.3 Density estimation for data measured with error |
|
|
163 | (8) |
|
7.3.1 Classical density deconvolution estimation |
|
|
164 | (2) |
|
7.3.2 Weighted density deconvolution estimation |
|
|
166 | (4) |
|
7.3.3 Manifold estimation |
|
|
170 | (1) |
|
7.4 Nearest neighbour estimation |
|
|
171 | (7) |
|
7.5 Further mathematical analysis |
|
|
178 | (3) |
|
7.5.1 Squared error analysis for deconvolution kernel density estimators |
|
|
178 | (1) |
|
7.5.2 Optimal selection of the number of nearest neighbours |
|
|
179 | (2) |
|
8 Computational algorithms |
|
|
181 | (18) |
|
|
181 | (4) |
|
8.2 Approximate binned estimation |
|
|
185 | (6) |
|
8.2.1 Approximate density estimation |
|
|
185 | (5) |
|
8.2.2 Approximate density derivative and functional estimation |
|
|
190 | (1) |
|
8.3 Recursive computation of the normal density derivatives |
|
|
191 | (4) |
|
8.4 Recursive computation of the normal functionals |
|
|
195 | (2) |
|
8.5 Numerical optimisation over matrix spaces |
|
|
197 | (2) |
|
|
199 | (6) |
|
|
205 | (2) |
|
B.1 The Kronecker product |
|
|
205 | (1) |
|
|
206 | (1) |
|
B.3 The commutation matrix |
|
|
206 | (1) |
Bibliography |
|
207 | (18) |
Index |
|
225 | |