Muutke küpsiste eelistusi

E-raamat: Munson, Young and Okiishi's Fundamentals of Fluid Mechanics

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Jan-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119598114
  • Formaat - EPUB+DRM
  • Hind: 54,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Jan-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119598114

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Fundamentals of Fluid Mechanics, 9th Edition offers comprehensive topical coverage, with varied examples and problems, application of the visual component of fluid mechanics, and a strong focus on effective learning. The authors have designed their presentation to enable the gradual development of reader confidence in problem solving. Each important concept is introduced in easy-to-understand terms before more complicated examples are discussed.  The 9th Edition includes new coverage of finite control volume analysis and compressible flow, as well as a selection of new problems.  Continuing this important work’s tradition of extensive real-world applications, each chapter includes Fluids in the News case study boxes in each chapter. In addition, there are a wide variety of videos designed to enhance comprehension, support visualization skill building and engage students more deeply with the material and concepts. 

1 Introduction
1(34)
Learning Objectives
1(2)
1.1 Some Characteristics of Fluids
3(1)
1.2 Dimensions, Dimensional Homogeneity, and Units
4(8)
1.2.1 Systems of Units
7(5)
1.3 Analysis of Fluid Behavior
12(1)
1.4 Measures of Fluid Mass and Weight
12(2)
1.4.1 Density
12(2)
1.4.2 Specific Weight
14(1)
1.4.3 Specific Gravity
14(1)
1.5 Ideal Gas Law
14(3)
1.6 Viscosity
17(6)
1.7 Compressibility of Fluids
23(3)
1.7.1 Bulk Modulus
23(1)
1.7.2 Compression and Expansion of Gases
24(1)
1.7.3 Speed of Sound
25(1)
1.8 Vapor Pressure
26(1)
1.9 Surface Tension
27(3)
1.10 A Brief Look Back in History
30(5)
Chapter Summary and Study Guide
32(2)
References
34(1)
2 Fluid Statics
35(41)
Learning Objectives
35(1)
2.1 Pressure at a Point
35(1)
2.2 Basic Equation for Pressure Field
36(2)
2.3 Pressure Variation in a Fluid at Rest
38(5)
2.3.1 Incompressible Fluid
39(3)
2.3.2 Compressible Fluid
42(1)
2.4 Standard Atmosphere
43(2)
2.5 Measurement of Pressure
45(2)
2.6 Manometry
47(4)
2.6.1 Piezometer Tube
47(1)
2.6.2 U-Tube Manometer
48(2)
2.6.3 Inclined-Tube Manometer
50(1)
2.7 Mechanical and Electronic Pressure-Measuring Devices
51(3)
2.8 Hydrostatic Force on a Plane Surface
54(6)
2.9 Pressure Prism
60(3)
2.10 Hydrostatic Force on a Curved Surface
63(2)
2.11 Buoyancy, Flotation, and Stability
65(5)
2.11.1 Archimedes' Principle
65(3)
2.11.2 Stability
68(2)
2.12 Pressure Variation in a Fluid with Rigid-Body Motion
70(6)
2.12.1 Linear Motion
70(2)
2.12.2 Rigid-Body Rotation
72(2)
Chapter Summary and Study Guide
74(1)
References
75(1)
3 Elementary Fluid Dynamics--The Bernoulli Equation
76(39)
Learning Objectives
76(1)
3.1 Newton's Second Law
76(3)
3.2 F = ma along a Streamline
79(4)
3.3 F = ma Normal to a Streamline
83(2)
3.4 Physical Interpretations and Alternate Forms of the Bernoulli Equation
85(3)
3.5 Static, Stagnation, Dynamic, and Total Pressure
88(5)
3.6 Examples of Use of the Bernoulli Equation
93(13)
3.6.1 Free Jets
93(3)
3.6.2 Confined Flows
96(6)
3.6.3 Flowrate Measurement
102(4)
3.7 The Energy Line and the Hydraulic Grade Line
106(3)
3.8 Restrictions on Use of the Bernoulli Equation
109(6)
3.8.1 Compressibility Effects
109(1)
3.8.2 Unsteady Effects
110(1)
3.8.3 Rotational Effects
111(1)
3.8.4 Other Restrictions
112(1)
Chapter Summary and Study Guide
113(1)
References
114(1)
4 Fluid Kinematics
115(32)
Learning Objectives
115(1)
4.1 The Velocity Field
115(9)
4.1.1 Eulerian and Lagrangian Flow Descriptions
118(1)
4.1.2 One-, Two-, and Three-Dimensional Flows
119(1)
4.1.3 Steady and Unsteady Flows
120(1)
4.1.4 Streamlines, Streaklines, and Pathlines
120(4)
4.2 The Acceleration Field
124(8)
4.2.1 Acceleration and the Material Derivative
124(3)
4.2.2 Unsteady Effects
127(1)
4.2.3 Convective Effects
127(3)
4.2.4 Streamline Coordinates
130(2)
4.3 Control Volume and System Representations
132(2)
4.4 The Reynolds Transport Theorem
134(13)
4.4.1 Derivation of the Reynolds Transport Theorem
136(5)
4.4.2 Physical Interpretation
141(1)
4.4.3 Relationship to Material Derivative
141(1)
4.4.4 Steady Effects
142(1)
4.4.5 Unsteady Effects
142(1)
4.4.6 Moving Control Volumes
143(2)
4.4.7 Selection of a Control Volume
145(1)
Chapter Summary and Study Guide
145(1)
References
146(1)
5 Finite Control Volume Analysis
147(58)
Learning Objectives
147(1)
5.1 Conservation of Mass--The Continuity Equation
148(12)
5.1.1 Derivation of the Continuity Equation
148(2)
5.1.2 Fixed, Nondeforming Control Volume
150(6)
5.1.3 Moving, Nondeforming Control Volume
156(2)
5.1.4 Deforming Control Volume
158(2)
5.2 Newton's Second Law--The Linear Momentum and Moment-of-Momentum Equations
160(22)
5.2.1 Derivation of the Linear Momentum Equation
160(1)
5.2.2 Application of the Linear Momentum Equation
161(13)
5.2.3 Derivation of the Moment-of-Momentum Equation
174(2)
5.2.4 Application of the Moment-of-Momentum Equation
176(6)
5.3 First Law of Thermodynamics-- The Energy Equation
182(18)
5.3.1 Derivation of the Energy Equation
182(3)
5.3.2 Application of the Energy Equation
185(4)
5.3.3 The Mechanical Energy Equation and the Bernoulli Equation
189(6)
5.3.4 Application of the Energy Equation to Nonuniform Flows
195(2)
5.3.5 Comparison of Various Forms of the Energy Equation
197(2)
5.3.6 Combination of the Energy Equation and the Moment-of-Momentum Equation
199(1)
5.4 Second Law of Thermodynamics-Irreversible Flow
200(5)
5.4.1 Semi-infinitesimal Control Volume Statement of the Energy Equation
200(1)
5.4.2 Semi-infinitesimal Control Volume Statement of the Second Law of Thermodynamics
201(1)
5.4.3 Combination of the Equations of the First and Second Laws of Thermodynamics
202(1)
Chapter Summary and Study Guide
203(1)
References
204(1)
6 Differential Analysis of Fluid Flow
205(58)
Learning Objectives
205(1)
6.1 Fluid Element Kinematics
206(5)
6.1.1 Velocity and Acceleration Fields Revisited
206(1)
6.1.2 Linear Motion and Deformation
207(1)
6.1.3 Angular Motion and Deformation
208(3)
6.2 Conservation of Mass
211(6)
6.2.1 Differential Form of Continuity Equation
211(3)
6.2.2 Cylindrical Polar Coordinates
214(1)
6.2.3 The Stream Function
214(3)
6.3 The Linear Momentum Equation
217(4)
6.3.1 Description of Forces Acting on the Differential Element
218(2)
6.3.2 Equations of Motion
220(1)
6.4 Inviscid Flow
221(7)
6.4.1 Euler's Equations of Motion
221(1)
6.4.2 The Bernoulli Equation
222(1)
6.4.3 Irrotational Flow
223(2)
6.4.4 The Bernoulli Equation for Irrotational Flow
225(1)
6.4.5 The Velocity Potential
226(2)
6.5 Some Basic, Plane Potential Flows
228(9)
6.5.1 Uniform Flow
230(1)
6.5.2 Source and Sink
230(2)
6.5.3 Vortex
232(3)
6.5.4 Doublet
235(2)
6.6 Superposition of Basic, Plane Potential Flows
237(11)
6.6.1 Source in a Uniform Stream-- Half-Body
237(3)
6.6.2 Rankine Ovals
240(2)
6.6.3 Flow Around a Circular Cylinder
242(6)
6.7 Other Aspects of Potential Flow Analysis
248(1)
6.8 Viscous Flow
248(3)
6.8.1 Stress-Deformation Relationships
249(1)
6.8.2 The Navier-Stokes Equations
249(2)
6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows
251(9)
6.9.1 Steady, Laminar Flow Between Fixed Parallel Plates
251(2)
6.9.2 Couette Flow
253(2)
6.9.3 Steady, Laminar Flow in Circular Tubes
255(3)
6.9.4 Steady, Axial, Laminar Flow inanAnnulus
258(2)
6.10 Other Aspects of Differential Analysis
260(3)
6.10.1 Numerical Methods
260(1)
Chapter Summary and Study Guide
261(1)
References
262(1)
7 Dimensional Analysis, Similitude, and Modeling
263(44)
Learning Objectives
263(1)
7.1 The Need for Dimensional Analysis
264(2)
7.2 Buckingham Pi Theorem
266(1)
7.3 Determination of Pi Terms
267(6)
7.4 Some Additional Comments about Dimensional Analysis
273(3)
7.4.1 Selection of Variables
273(1)
7.4.2 Determination of Reference Dimensions
274(2)
7.4.3 Uniqueness of Pi Terms
276(1)
7.5 Determination of Pi Terms by Inspection
276(2)
7.6 Common Dimensionless Groups in Fluid Mechanics
278(5)
7.7 Correlation of Experimental Data
283(3)
7.7.1 Problems with One Pi Term
283(1)
7.7.2 Problems with Two or More Pi Terms
284(2)
7.8 Modeling and Similitude
286(7)
7.8.1 Theory of Models
287(3)
7.8.2 Model Scales
290(1)
7.8.3 Practical Aspects of Using Models
291(2)
7.9 Some Typical Model Studies
293(9)
7.9.1 Flow Through Closed Conduits
293(2)
7.9.2 Flow Around Immersed Bodies
295(4)
7.9.3 Flow with a Free Surface
299(3)
7.10 Similitude Based on Governing Differential Equations
302(5)
Chapter Summary and Study Guide
305(1)
References
306(1)
8 Viscous Flow in Pipes
307(66)
Learning Objectives
307(1)
8.1 General Characteristics of Pipe Flow
308(5)
8.1.1 Laminar or Turbulent Flow
309(2)
8.1.2 Entrance Region and Fully Developed Flow
311(1)
8.1.3 Pressure and Shear Stress
312(1)
8.2 Fully Developed Laminar Flow
313(9)
8.2.1 From F = ma Applied Directly to a Fluid Element
314(4)
8.2.2 From the Navier-Stokes Equations
318(1)
8.2.3 From Dimensional Analysis
319(1)
8.2.4 Energy Considerations
320(2)
8.3 Fully Developed Turbulent Flow
322(11)
8.3.1 Transition from Laminar to Turbulent Flow
322(2)
8.3.2 Turbulent Shear Stress
324(5)
8.3.3 Turbulent Velocity Profile
329(3)
8.3.4 Turbulence Modeling
332(1)
8.3.5 Chaos and Turbulence
333(1)
8.4 Pipe Flow Losses via Dimensional Analysis
333(18)
8.4.1 Major Losses
333(6)
8.4.2 Minor Losses
339(9)
8.4.3 Noncircular Conduits
348(3)
8.5 Pipe Flow Examples
351(13)
8.5.1 Single Pipes
351(9)
8.5.2 Multiple Pipe Systems
360(4)
8.6 Pipe Flowrate Measurement
364(9)
8.6.1 Pipe Flowrate Meters
364(5)
8.6.2 Volume Flowmeters
369(1)
Chapter Summary and Study Guide
370(2)
References
372(1)
9 Flow over Immersed Bodies
373(64)
Learning Objectives
373(1)
9.1 General External Flow Characteristics
374(8)
9.1.1 Lift and Drag Concepts
375(3)
9.1.2 Characteristics of Flow Past an Object
378(4)
9.2 Boundary Layer Characteristics
382(23)
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate
382(3)
9.2.2 Prandtl/Blasius Boundary Layer Solution
385(4)
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate
389(5)
9.2.4 Transition from Laminar to Turbulent Flow
394(2)
9.2.5 Turbulent Boundary Layer Flow
396(3)
9.2.6 Effects of Pressure Gradient
399(5)
9.2.7 Momentum Integral Boundary Layer Equation with Nonzero Pressure Gradient
404(1)
9.3 Drag
405(17)
9.3.1 Friction Drag
405(2)
9.3.2 Pressure Drag
407(2)
9.3.3 Drag Coefficient Data and Examples
409(13)
9.4 Lift
422(15)
9.4.1 Surface Pressure Distribution
424(5)
9.4.2 Circulation
429(5)
Chapter Summary and Study Guide
434(1)
References
435(2)
10 Open-Channel Flow
437(36)
Learning Objectives
437(1)
10.1 General Characteristics of Open-Channel Flow
437(2)
10.2 Surface Waves
439(5)
10.2.1 Wave Speed
439(3)
10.2.2 Froude Number Effects
442(2)
10.3 Energy Considerations
444(4)
10.3.1 Energy Balance
444(1)
10.3.2 Specific Energy
445(3)
10.4 Uniform Flow
448(9)
10.4.1 Uniform Flow Approximations
448(1)
10.4.2 The Chezy and Manning Equations
449(2)
10.4.3 Uniform Flow Examples
451(6)
10.5 Gradually Varied Flow
457(1)
10.6 Rapidly Varied Flow
458(15)
10.6.1 The Hydraulic Jump
460(4)
10.6.2 Sharp-Crested Weirs
464(3)
10.6.3 Broad-Crested Weirs
467(3)
10.6.4 Underflow (Sluice) Gates
470(1)
Chapter Summary and Study Guide
471(1)
References
472(1)
11 Compressible Flow
473(72)
Learning Objectives
473(1)
11.1 Ideal Gas Thermodynamics
474(5)
11.2 Stagnation Properties
479(1)
11.3 Mach Number and Speed of Sound
480(5)
11.4 Compressible Flow Regimes
485(4)
11.5 Shockwaves
489(6)
11.5.1 Normal Shock
489(6)
11.6 Isentropic Flow
495(5)
11.6.1 Steady Isentropic Flow of an Ideal Gas
495(3)
11.6.2 Incompressible Flow and the Bernoulli Equation
498(2)
11.6.3 The Critical State
500(1)
11.7 One-Dimensional Flow in a Variable Area Duct
500(16)
11.7.1 General Considerations
501(3)
11.7.2 Isentropic Flow of an Ideal Gas with Area Change
504(6)
11.7.3 Operation of a Converging Nozzle
510(2)
11.7.4 Operation of a Converging-Diverging Nozzle
512(4)
11.8 Constant-Area Duct Flow with Friction
516(12)
11.8.1 Preliminary Consideration: Comparison with Incompressible Duct Flow
516(1)
11.8.2 The Fanno Line
517(3)
11.8.3 Adiabatic Frictional Flow (Fanno Flow) of an Ideal Gas
520(8)
11.9 Frictionless Flow in a Constant-Area Duct with Heating or Cooling
528(7)
11.9.1 The Rayleigh Line
528(3)
11.9.2 Frictionless Flow of an Ideal Gas with Heating or Cooling (Rayleigh Flow)
531(3)
11.9.3 Rayleigh Lines, Fanno Lines, and Normal Shocks
534(1)
11.10 Analogy Between Compressible and Open-Channel Flows
535(1)
11.11 Two-Dimensional Supersonic Flow
536(2)
11.12 Effects of Compressibility in External Flow
538(7)
Chapter Summary and Study Guide
541(3)
References
544(1)
12 Turbomachines
545(49)
Learning Objectives
545(1)
12.1 Introduction
546(1)
12.2 Basic Energy Considerations
547(4)
12.3 Angular Momentum Considerations
551(2)
12.4 The Centrifugal Pump
553(13)
12.4.1 Theoretical Considerations
554(4)
12.4.2 Pump Performance Characteristics
558(2)
12.4.3 Net Positive Suction Head (NPSH)
560(2)
12.4.4 System Characteristics, Pump-System Matching, and Pump Selection
562(4)
12.5 Dimensionless Parameters and Similarity Laws
566(5)
12.5.1 Special Pump Scaling Laws
568(1)
12.5.2 Specific Speed
569(1)
12.5.3 Suction Specific Speed
570(1)
12.6 Axial-Flow and Mixed-Flow Pumps
571(2)
12.7 Fans
573(1)
12.8 Turbines
574(11)
12.8.1 Impulse Turbines
575(7)
12.8.2 Reaction Turbines
582(3)
12.9 Compressible Flow Turbomachines
585(9)
12.9.1 Compressors
585(4)
12.9.2 Compressible Flow Turbines
589(2)
Chapter Summary and Study Guide
591(2)
References
593(1)
Appendix A Computational Fluid Dynamics 594(19)
Appendix B Physical Properties of Fluids 613(5)
Appendix C Properties of the U.S. Standard Atmosphere 618(2)
Appendix D Compressible Flow Functions for an Ideal Gas with k= 1.4 620(8)
Appendix E Comprehensive Table of Conversion Factors 628
Questions and problems 1(1)
Index 1