|
|
1 | (12) |
|
1.1 Background and Motivation |
|
|
1 | (1) |
|
1.2 Content, Target Audience, Prerequisites, Exercises, and Complementary Material |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (5) |
|
|
8 | (1) |
|
|
9 | (4) |
|
|
11 | (2) |
|
|
13 | (204) |
|
2 The Musical Signal: Physically and Psychologically |
|
|
15 | (54) |
|
|
15 | (1) |
|
2.2 The Tonal Quality: Pitch -- the First Moment |
|
|
16 | (25) |
|
|
16 | (1) |
|
2.2.2 Pure and Complex Tones on a Vibrating String |
|
|
17 | (5) |
|
2.2.3 Intervals and Musical Tone Height |
|
|
22 | (4) |
|
2.2.4 Musical Notation and Naming of Pitches and Intervals |
|
|
26 | (3) |
|
|
29 | (2) |
|
|
31 | (3) |
|
2.2.7 Correlation Analysis |
|
|
34 | (2) |
|
2.2.8 Fluctuating Pitch and Frequency Modulation |
|
|
36 | (1) |
|
2.2.9 Simultaneous Pitches |
|
|
37 | (2) |
|
2.2.10 Other Sounds with and without Pitch Percepts |
|
|
39 | (2) |
|
2.3 Volume --- the Second Moment |
|
|
41 | (9) |
|
|
41 | (1) |
|
2.3.2 The Physical Basis: Sound Waves in Air |
|
|
41 | (5) |
|
2.3.3 Scales for the Subjective Perception of the Volume |
|
|
46 | (3) |
|
2.3.4 Amplitude Modulation |
|
|
49 | (1) |
|
2.4 Timbre --- the Third Moment |
|
|
50 | (12) |
|
2.4.1 Uncertainty Principle |
|
|
51 | (1) |
|
2.4.2 Gabor Transform and Spectrogram |
|
|
52 | (1) |
|
2.4.3 Application of the Gabor Transform |
|
|
53 | (1) |
|
2.4.4 Formants, Vowels, and Characteristic Timbres of Voices and Instruments |
|
|
54 | (2) |
|
|
56 | (2) |
|
2.4.6 Sound Fluctuations and Timbre |
|
|
58 | (1) |
|
2.4.7 Physical Model for the Timbre of Wind Instruments |
|
|
58 | (4) |
|
2.5 Duration --- the Fourth Moment |
|
|
62 | (4) |
|
2.5.1 Integration Times and Temporal Resolvability |
|
|
62 | (1) |
|
2.5.2 Time Structure in Music: Rhythm and Measure |
|
|
63 | (1) |
|
2.5.3 Wavelets and Scalograms |
|
|
63 | (3) |
|
|
66 | (1) |
|
|
66 | (3) |
|
|
66 | (3) |
|
3 Musical Structures and Their Perception |
|
|
69 | (42) |
|
|
69 | (1) |
|
|
69 | (5) |
|
|
69 | (1) |
|
3.2.2 Diatonic and Chromatic Scales |
|
|
70 | (2) |
|
|
72 | (2) |
|
3.3 Gestalt and Auditory Scene Analysis |
|
|
74 | (3) |
|
3.4 Musical Textures from Monophony to Polyphony |
|
|
77 | (1) |
|
3.5 Polyphony and Harmony |
|
|
77 | (18) |
|
3.5.1 Dichotomy of Consonant and Dissonant Intervals |
|
|
78 | (3) |
|
3.5.2 Consonant and Dissonant Intervals and Tone Progression |
|
|
81 | (1) |
|
3.5.3 Elementary Counterpoint |
|
|
82 | (3) |
|
|
85 | (9) |
|
|
94 | (1) |
|
3.6 Time Structures of Music |
|
|
95 | (5) |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
3.7 Elementary Theory of Form |
|
|
100 | (7) |
|
|
107 | (4) |
|
|
108 | (3) |
|
4 Digital Filters and Spectral Analysis |
|
|
111 | (34) |
|
|
111 | (1) |
|
4.2 Continuous-Time, Discrete-Time, and Digital Signals |
|
|
111 | (1) |
|
4.3 Discrete-Time Systems |
|
|
112 | (11) |
|
4.3.1 Parametric LTI Systems |
|
|
116 | (2) |
|
4.3.2 Digital Filters and Filter Design |
|
|
118 | (5) |
|
4.4 Spectral Analysis Using the Discrete Fourier Transform |
|
|
123 | (7) |
|
4.4.1 The Discrete Fourier Transform |
|
|
123 | (4) |
|
4.4.2 Frequency Resolution and Zero Padding |
|
|
127 | (2) |
|
4.4.3 Short-Time Spectral Analysis |
|
|
129 | (1) |
|
4.5 The Constant-Q Transform |
|
|
130 | (1) |
|
4.6 Filter Banks for Short-Time Spectral Analysis |
|
|
131 | (5) |
|
4.6.1 Uniform Filter Banks |
|
|
132 | (3) |
|
4.6.2 Nonuniform Filter Banks |
|
|
135 | (1) |
|
|
136 | (2) |
|
4.8 Fundamental Frequency Estimation |
|
|
138 | (2) |
|
|
140 | (5) |
|
|
141 | (4) |
|
|
145 | (20) |
|
|
145 | (1) |
|
|
146 | (7) |
|
5.2.1 Time-Domain Features |
|
|
146 | (1) |
|
5.2.2 Frequency-Domain Features |
|
|
147 | (4) |
|
5.2.3 Mel Frequency Cepstral Coefficients |
|
|
151 | (2) |
|
|
153 | (4) |
|
|
153 | (1) |
|
5.3.2 Chroma Energy Normalized Statistics |
|
|
154 | (1) |
|
5.3.3 Timbre-Invariant Chroma Features |
|
|
155 | (1) |
|
5.3.4 Characteristics of Partials |
|
|
156 | (1) |
|
|
157 | (5) |
|
5.4.1 Features for Onset Detection |
|
|
157 | (2) |
|
5.4.2 Phase-Domain Characteristics |
|
|
159 | (1) |
|
5.4.3 Fluctuation Patterns |
|
|
160 | (2) |
|
|
162 | (3) |
|
|
162 | (3) |
|
|
165 | (12) |
|
|
165 | (1) |
|
|
166 | (1) |
|
6.3 The Meddis Model of the Auditory Periphery |
|
|
167 | (3) |
|
6.3.1 Outer and Middle Ear |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
6.3.4 Auditory Nerve Synapse |
|
|
169 | (1) |
|
6.3.5 Auditory Nerve Activity |
|
|
170 | (1) |
|
6.4 Pitch Estimation Using Auditory Models |
|
|
170 | (2) |
|
6.4.1 Autocorrelation Models |
|
|
170 | (1) |
|
6.4.2 Pitch Extraction in the Brain |
|
|
171 | (1) |
|
|
172 | (5) |
|
|
173 | (4) |
|
7 Digital Representation of Music |
|
|
177 | (20) |
|
|
177 | (1) |
|
|
178 | (8) |
|
7.2.1 Optical Music Recognition |
|
|
178 | (1) |
|
|
179 | (1) |
|
7.2.3 Musical Instrument Digital Interface |
|
|
180 | (4) |
|
|
184 | (2) |
|
|
186 | (7) |
|
7.3.1 Pulse Code Modulation and Raw Audio Format |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
193 | (2) |
|
7.4.1 Music TeX Typesetting |
|
|
194 | (1) |
|
7.4.2 Transcription Tools |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
8 Music Data: Beyond the Signal Level |
|
|
197 | (20) |
|
|
197 | (1) |
|
8.2 From the Signal Level to Semantic Features |
|
|
198 | (3) |
|
8.2.1 Types of Semantic Features |
|
|
198 | (1) |
|
8.2.2 Deriving Semantic Features |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
204 | (4) |
|
|
205 | (1) |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (3) |
|
|
212 | (5) |
|
|
212 | (5) |
|
|
217 | (192) |
|
|
219 | (44) |
|
|
219 | (1) |
|
|
219 | (4) |
|
|
219 | (3) |
|
9.2.2 Empirical Analogues |
|
|
222 | (1) |
|
|
223 | (4) |
|
|
223 | (2) |
|
9.3.2 Empirical Analogues |
|
|
225 | (2) |
|
9.4 Characterization of Random Variables |
|
|
227 | (9) |
|
|
227 | (2) |
|
9.4.2 Empirical Analogues |
|
|
229 | (4) |
|
9.4.3 Important Univariate Distributions |
|
|
233 | (3) |
|
|
236 | (6) |
|
|
236 | (3) |
|
9.5.2 Empirical Analogues |
|
|
239 | (3) |
|
9.6 Estimators of Unknown Parameters and Their Properties |
|
|
242 | (2) |
|
9.7 Testing Hypotheses on Unknown Parameters |
|
|
244 | (4) |
|
9.8 Modeling of the Relationship between Variables |
|
|
248 | (14) |
|
|
248 | (4) |
|
|
252 | (7) |
|
9.8.3 Towards Smaller and Easier to Handle Models |
|
|
259 | (3) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (20) |
|
|
263 | (1) |
|
|
264 | (2) |
|
10.3 Single-Objective Problems |
|
|
266 | (10) |
|
10.3.1 Binary Feasible Sets |
|
|
266 | (5) |
|
10.3.2 Continuous Feasible Sets |
|
|
271 | (5) |
|
10.3.3 Compound Feasible Sets |
|
|
276 | (1) |
|
10.4 Multi-Objective Problems |
|
|
276 | (5) |
|
|
281 | (2) |
|
|
281 | (2) |
|
|
283 | (20) |
|
|
283 | (1) |
|
11.2 Distance Measures and Cluster Distinction |
|
|
284 | (3) |
|
11.3 Agglomerative Hierarchical Clustering |
|
|
287 | (4) |
|
11.3.1 Agglomerative Hierarchical Methods |
|
|
287 | (2) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
291 | (6) |
|
|
291 | (2) |
|
11.4.2 Self-Organizing Maps |
|
|
293 | (4) |
|
|
297 | (1) |
|
11.6 Independent Component Analysis |
|
|
297 | (4) |
|
|
301 | (2) |
|
|
302 | (1) |
|
12 Supervised Classification |
|
|
303 | (26) |
|
|
303 | (1) |
|
12.2 Supervised Learning and Classification |
|
|
304 | (1) |
|
12.3 Targets of Classification |
|
|
305 | (1) |
|
12.4 Selected Classification Methods |
|
|
306 | (18) |
|
12.4.1 Bayes and Approximate Bayes Methods |
|
|
307 | (3) |
|
12.4.2 Nearest Neighbor Prediction |
|
|
310 | (2) |
|
|
312 | (2) |
|
12.4.4 Support Vector Machines |
|
|
314 | (5) |
|
12.4.5 Ensemble Methods: Bagging |
|
|
319 | (1) |
|
|
320 | (4) |
|
12.5 Interpretation of Classification Results |
|
|
324 | (1) |
|
|
325 | (4) |
|
|
326 | (3) |
|
|
329 | (36) |
|
|
329 | (3) |
|
|
332 | (7) |
|
13.2.1 Resampling Methods |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
336 | (2) |
|
|
338 | (1) |
|
13.2.6 Properties and Recommendations |
|
|
338 | (1) |
|
|
339 | (13) |
|
13.3.1 Loss-Based Performance |
|
|
339 | (1) |
|
|
340 | (1) |
|
13.3.3 Common Performance Measures Based on the Confusion Matrix |
|
|
341 | (2) |
|
13.3.4 Measures for Imbalanced Sets |
|
|
343 | (2) |
|
13.3.5 Evaluation of Aggregated Predictions |
|
|
345 | (2) |
|
13.3.6 Measures beyond Classification Performance |
|
|
347 | (5) |
|
13.4 Hyperparameter Tuning: Nested Resampling |
|
|
352 | (2) |
|
13.5 Tests for Comparing Classifiers |
|
|
354 | (5) |
|
|
354 | (2) |
|
13.5.2 Pairwise t-Test Based on B Independent Test Data Sets |
|
|
356 | (1) |
|
13.5.3 Comparison of Many Classifiers |
|
|
357 | (2) |
|
13.6 Multi-Objective Evaluation |
|
|
359 | (1) |
|
|
360 | (5) |
|
|
361 | (4) |
|
|
365 | (24) |
|
|
365 | (2) |
|
|
367 | (6) |
|
14.2.1 Transforms of Feature Domains |
|
|
367 | (1) |
|
|
368 | (3) |
|
|
371 | (1) |
|
14.2.4 Harmonization of the Feature Matrix |
|
|
372 | (1) |
|
14.3 Processing of Feature Dimension |
|
|
373 | (1) |
|
14.4 Processing of Time Dimension |
|
|
374 | (6) |
|
14.4.1 Sampling and Order-Independent Statistics |
|
|
374 | (1) |
|
14.4.2 Order-Dependent Statistics Based on Time Series Analysis |
|
|
375 | (2) |
|
14.4.3 Frame Selection Based on Musical Structure |
|
|
377 | (3) |
|
14.5 Automatic Feature Construction |
|
|
380 | (3) |
|
14.6 A Note on the Evaluation of Feature Processing |
|
|
383 | (2) |
|
|
385 | (4) |
|
|
385 | (4) |
|
|
389 | (20) |
|
|
389 | (1) |
|
|
390 | (3) |
|
15.3 The Scope of Feature Selection |
|
|
393 | (1) |
|
15.4 Design Steps and Categorization of Methods |
|
|
394 | (1) |
|
15.5 Ways to Measure Relevance of Features |
|
|
395 | (3) |
|
15.5.1 Correlation-Based Relevance |
|
|
395 | (1) |
|
15.5.2 Comparison of Feature Distributions |
|
|
396 | (1) |
|
15.5.3 Relevance Derived from Information Theory |
|
|
397 | (1) |
|
15.6 Examples for Feature Selection Algorithms |
|
|
398 | (4) |
|
|
398 | (2) |
|
|
400 | (1) |
|
15.6.3 Evolutionary Search |
|
|
400 | (2) |
|
15.7 Multi-Objective Feature Selection |
|
|
402 | (2) |
|
|
404 | (5) |
|
|
405 | (4) |
|
|
409 | (198) |
|
|
411 | (22) |
|
|
411 | (1) |
|
|
412 | (10) |
|
|
412 | (1) |
|
16.2.2 Detection Strategies |
|
|
413 | (6) |
|
16.2.3 Goodness of Onset Detection |
|
|
419 | (3) |
|
|
422 | (3) |
|
16.3.1 Reasons for Clustering |
|
|
422 | (1) |
|
16.3.2 The Clustering Process |
|
|
422 | (3) |
|
16.3.3 Refining the Clustering Process |
|
|
425 | (1) |
|
16.4 Musical Structure Analysis |
|
|
425 | (3) |
|
|
428 | (1) |
|
|
429 | (4) |
|
|
430 | (3) |
|
|
433 | (18) |
|
|
433 | (1) |
|
|
434 | (1) |
|
17.3 Musical Challenges: Partials, Vibrato, and Noise |
|
|
434 | (1) |
|
17.4 Statistical Challenge: Piecewise Local Stationarity |
|
|
435 | (1) |
|
17.5 Transcription Scheme |
|
|
436 | (7) |
|
17.5.1 Separation of the Relevant Part of Music |
|
|
436 | (1) |
|
17.5.2 Estimation of Fundamental Frequency |
|
|
436 | (4) |
|
17.5.3 Classification of Notes, Silence, and Noise |
|
|
440 | (2) |
|
17.5.4 Estimation of Relative Length of Notes and Meter |
|
|
442 | (1) |
|
17.5.5 Estimation of the Key |
|
|
443 | (1) |
|
17.5.6 Final Transcription into Sheet Music |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
445 | (6) |
|
|
446 | (5) |
|
18 Instrument Recognition |
|
|
451 | (18) |
|
|
451 | (2) |
|
18.2 Types of Instrument Recognition |
|
|
453 | (1) |
|
|
454 | (2) |
|
18.4 Example of Instrument Recognition |
|
|
456 | (8) |
|
|
456 | (1) |
|
|
457 | (1) |
|
18.4.3 Feature Extraction and Processing |
|
|
458 | (1) |
|
18.4.4 Feature Selection and Supervised Classification |
|
|
459 | (1) |
|
|
460 | (4) |
|
18.4.6 Summary of Example |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
464 | (5) |
|
|
465 | (4) |
|
|
469 | (24) |
|
|
469 | (1) |
|
|
470 | (1) |
|
19.3 Chroma or Pitch Class Profile Extraction |
|
|
471 | (5) |
|
19.3.1 Computation Using the Short-Time Fourier Transform |
|
|
472 | (1) |
|
19.3.2 Computation Using the Constant-Q Transform |
|
|
472 | (2) |
|
19.3.3 Influence of Timbre on the Chroma/PCP |
|
|
474 | (2) |
|
19.4 Chord Representation |
|
|
476 | (1) |
|
19.4.1 Knowledge-Driven Approach |
|
|
476 | (1) |
|
19.4.2 Data-Driven Approach |
|
|
476 | (1) |
|
19.5 Frame-Based System for Chord Recognition |
|
|
477 | (2) |
|
19.5.1 Knowledge-Driven Approach |
|
|
477 | (2) |
|
19.5.2 Data-Driven Approach |
|
|
479 | (1) |
|
19.5.3 Chord Fragmentation |
|
|
479 | (1) |
|
19.6 Hidden Markov Model-Based System for Chord Recognition |
|
|
479 | (4) |
|
19.6.1 Knowledge-Driven Transition Probabilities |
|
|
481 | (1) |
|
19.6.2 Data-Driven Transition Probabilities |
|
|
481 | (2) |
|
19.7 Joint Chord and Key Recognition |
|
|
483 | (2) |
|
19.7.1 Key-Only Recognition |
|
|
484 | (1) |
|
19.7.2 Joint Chord and Key Recognition |
|
|
484 | (1) |
|
19.8 Evaluating the Performances of Chord and Key Estimation |
|
|
485 | (2) |
|
19.8.1 Evaluating Segmentation Quality |
|
|
485 | (1) |
|
19.8.2 Evaluating Labeling Quality |
|
|
485 | (2) |
|
|
487 | (1) |
|
|
487 | (6) |
|
19.10.1 Alternative Audio Signal Representations |
|
|
488 | (1) |
|
19.10.2 Alternative Representations of the Chord Labels |
|
|
488 | (1) |
|
19.10.3 Taking into Account Other Musical Concepts |
|
|
488 | (1) |
|
|
489 | (4) |
|
|
493 | (18) |
|
|
493 | (1) |
|
|
494 | (4) |
|
|
494 | (1) |
|
|
495 | (1) |
|
|
496 | (1) |
|
20.2.4 Automatic Rhythm Estimation |
|
|
496 | (2) |
|
20.3 Overall Scheme of Tempo Estimation |
|
|
498 | (3) |
|
20.3.1 Feature List Creation |
|
|
498 | (3) |
|
|
501 | (1) |
|
20.4 Evaluation of Tempo Estimation |
|
|
501 | (1) |
|
20.5 A Simple Tempo Estimation System |
|
|
502 | (2) |
|
20.6 Applications of Automatic Rhythm Estimation |
|
|
504 | (1) |
|
|
505 | (1) |
|
|
506 | (5) |
|
|
506 | (5) |
|
|
511 | (30) |
|
|
511 | (2) |
|
21.1.1 What Are Emotions? |
|
|
511 | (1) |
|
21.1.2 Difference between Basic Emotions, Moods, and Emotional Episodes |
|
|
512 | (1) |
|
21.1.3 Personality Differences and Emotion Perception |
|
|
512 | (1) |
|
21.2 Theories of Emotions and Models |
|
|
513 | (4) |
|
21.2.1 Hevner Clusters of Affective Terms |
|
|
513 | (2) |
|
21.2.2 Semantic Differential |
|
|
515 | (1) |
|
|
515 | (1) |
|
21.2.4 Circumplex Word Mapping by Russell |
|
|
516 | (1) |
|
21.2.5 Watson--Tellegen Diagram |
|
|
516 | (1) |
|
|
517 | (1) |
|
|
518 | (4) |
|
|
518 | (2) |
|
21.4.2 Moods and Other Affective States |
|
|
520 | (2) |
|
21.5 Factors of Influence and Features |
|
|
522 | (8) |
|
|
522 | (2) |
|
|
524 | (1) |
|
21.5.3 Instrumentation and Timbre |
|
|
525 | (1) |
|
|
525 | (1) |
|
|
526 | (1) |
|
21.5.6 Lyrics, Genres, and Social Data |
|
|
527 | (1) |
|
21.5.7 Examples: Individual Comparison of Features |
|
|
528 | (2) |
|
21.6 Computationally Based Emotion Recognition |
|
|
530 | (4) |
|
21.6.1 A Note on Feature Processing |
|
|
532 | (2) |
|
|
534 | (1) |
|
|
534 | (1) |
|
|
535 | (6) |
|
|
535 | (6) |
|
22 Similarity-Based Organization of Music Collections |
|
|
541 | (22) |
|
|
541 | (1) |
|
22.2 Learning a Music Similarity Measure |
|
|
542 | (8) |
|
22.2.1 Formalizing an Adaptable Model of Music Similarity |
|
|
543 | (1) |
|
22.2.2 Modeling Preferences through Distance Constraints |
|
|
544 | (3) |
|
22.2.3 Dealing with Inconsistent Constraint Sets |
|
|
547 | (1) |
|
22.2.4 Learning Distance Facet Weights |
|
|
547 | (3) |
|
22.3 Visualization: Dealing with Projection Errors |
|
|
550 | (5) |
|
22.3.1 Popular Projection Techniques |
|
|
550 | (1) |
|
22.3.2 Common and Unavoidable Projection Errors |
|
|
551 | (1) |
|
22.3.3 Static Visualization of Local Projection Properties |
|
|
552 | (1) |
|
22.3.4 Dynamic Visualization of "Wormholes" |
|
|
553 | (2) |
|
22.3.5 Combined Visualization of Different Structural Views |
|
|
555 | (1) |
|
22.4 Dealing with Changes in the Collection |
|
|
555 | (3) |
|
22.4.1 Incremental Structuring Techniques |
|
|
556 | (1) |
|
22.4.2 Aligned Projections |
|
|
556 | (2) |
|
|
558 | (1) |
|
|
558 | (5) |
|
|
559 | (4) |
|
|
563 | (26) |
|
|
563 | (1) |
|
23.2 Common Recommendation Techniques |
|
|
564 | (10) |
|
23.2.1 Collaborative Filtering |
|
|
564 | (5) |
|
23.2.2 Content-Based Recommendation |
|
|
569 | (3) |
|
23.2.3 Further Knowledge Sources and Hybridization |
|
|
572 | (2) |
|
23.3 Specific Aspects of Music Recommendation |
|
|
574 | (2) |
|
23.4 Evaluating Recommender Systems |
|
|
576 | (5) |
|
23.4.1 Laboratory Studies |
|
|
576 | (1) |
|
23.4.2 Offline Evaluation and Accuracy Metrics |
|
|
576 | (2) |
|
23.4.3 Beyond Accuracy: Additional Quality Factors |
|
|
578 | (3) |
|
23.5 Current Topics and Outlook |
|
|
581 | (3) |
|
23.5.1 Context-Aware Recommendation |
|
|
581 | (1) |
|
23.5.2 Incorporating Social Web Information |
|
|
582 | (1) |
|
23.5.3 Playlist Generation |
|
|
583 | (1) |
|
|
584 | (1) |
|
|
584 | (5) |
|
|
585 | (4) |
|
|
589 | (18) |
|
|
589 | (1) |
|
|
589 | (4) |
|
|
589 | (1) |
|
24.2.2 Why Automatic Composition? |
|
|
590 | (2) |
|
24.2.3 A Short History of Automatic Composition |
|
|
592 | (1) |
|
24.3 Principles of Automatic Composition |
|
|
593 | (10) |
|
|
593 | (6) |
|
|
599 | (4) |
|
24.3.3 Evaluation of Automatically Composed Music |
|
|
603 | (1) |
|
|
603 | (1) |
|
|
603 | (4) |
|
|
603 | (4) |
|
|
607 | (58) |
|
25 Implementation Architectures |
|
|
609 | (14) |
|
|
609 | (1) |
|
25.2 Architecture Variants and Their Evaluation |
|
|
610 | (5) |
|
25.2.1 Personal Player Device Processing |
|
|
612 | (1) |
|
25.2.2 Network Server-Based Processing |
|
|
613 | (1) |
|
25.2.3 Distributed Architectures |
|
|
614 | (1) |
|
|
615 | (2) |
|
25.3.1 Music Recommendation |
|
|
615 | (1) |
|
|
616 | (1) |
|
25.4 Novel Applications and Future Development |
|
|
617 | (3) |
|
|
620 | (1) |
|
|
621 | (2) |
|
|
621 | (2) |
|
|
623 | (18) |
|
|
623 | (2) |
|
26.2 User Input for Music Applications |
|
|
625 | (6) |
|
|
625 | (2) |
|
|
627 | (2) |
|
26.2.3 Visual and Other Sensor Input |
|
|
629 | (1) |
|
|
630 | (1) |
|
26.2.5 Coordination of Inputs from Multiple Users |
|
|
631 | (1) |
|
26.3 User Interface Output for Music Applications |
|
|
631 | (4) |
|
26.3.1 Audio Presentation |
|
|
631 | (1) |
|
26.3.2 Visual Presentation |
|
|
631 | (2) |
|
26.3.3 Haptic Presentation |
|
|
633 | (1) |
|
26.3.4 Multi-Modal Presentation |
|
|
634 | (1) |
|
26.4 Factors Supporting the Interpretation of User Input |
|
|
635 | (3) |
|
26.4.1 Role of Context in Music Interaction |
|
|
635 | (1) |
|
26.4.2 Impact of Implementation Architectures |
|
|
636 | (1) |
|
26.4.3 Influence of Social Interaction and Machine Learning |
|
|
637 | (1) |
|
|
638 | (3) |
|
|
639 | (2) |
|
27 Hardware Architectures for Music Classification |
|
|
641 | (24) |
|
|
641 | (1) |
|
27.2 Evaluation Metrics for Hardware Architectures |
|
|
642 | (2) |
|
|
642 | (1) |
|
27.2.2 Combined Cost Metrics |
|
|
643 | (1) |
|
27.3 Specific Methods for Feature Extraction for Hardware Utilization |
|
|
644 | (1) |
|
27.4 Architectures for Digital Signal Processing |
|
|
644 | (14) |
|
27.4.1 General Purpose Processor |
|
|
644 | (4) |
|
27.4.2 Graphics Processing Unit |
|
|
648 | (3) |
|
27.4.3 Digital Signal Processor |
|
|
651 | (3) |
|
27.4.4 Application-Specific Instruction Set Processor |
|
|
654 | (1) |
|
27.4.5 Dedicated Hardware |
|
|
654 | (4) |
|
27.5 Design Space Exploration |
|
|
658 | (3) |
|
|
661 | (1) |
|
|
662 | (3) |
|
|
662 | (3) |
Notation |
|
665 | (2) |
Index |
|
667 | |