Muutke küpsiste eelistusi

E-raamat: Must Know High School Geometry, Second Edition

  • Formaat: 496 pages
  • Ilmumisaeg: 12-Jun-2022
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264286157
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 15,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 496 pages
  • Ilmumisaeg: 12-Jun-2022
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781264286157
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A unique and effective way to learn Geometry—updated with the latest instruction and review

Must Know High School Geometry provides a fresh approach to learning. As part of our Must Know series, this new edition makes sure what you really need to know is clear up-front. Rather than starting with goals to be met, chapters begin by telling you the most important concepts about the topic at hand—and then show you exactly how these concepts help you accomplish your goals.

Written by expert geometry educators, Must Know High School Geometry, Second Edition provides updated lesson content and useful examples to help clarify each topic. Every chapter closes with reinforcing exercises to get you the practice you need to gain confidence. New features to this edition focus on extra support and helping you avoid common mistakes. In the end, you get everything you need to build your geometry skills quickly and painlessly.

Features:

  • More than 250 practice questions that parallel what you will find in your classwork and on exams
  • Bonus app that includes 100+ flashcards to reinforce concepts
  • “Extra Help” and “Easy Mistake” features put the emphasis on how to improve and what pitfalls to avoid
  • Geometry topics aligned to national and state educational standards
  • Practical examples throughout and an answer key with explanations make sure you understand the topics
  • Conversational writing style and informative IRL (In Real Life) and BTW (By the Way) sidebars
  • A special section for teachers with tips and strategies on teaching the material and content-specific links and resources

Introduction 1(3)
The Flashcard App 4(1)
1 Definitions
5(22)
The Basics
6(1)
Bisectors and Midpoints
7(6)
Types of Angles
13(6)
Reflexive, Substitution, and Transitive Properties
19(1)
Addition and Subtraction Postulates
20(2)
Exercises
22(5)
2 Triangle Proofs
27(30)
Side-Side-Side Postulate for Proving Triangles Congruent
30(2)
Side-Angle-Side Postulate for Proving Triangles Congruent
32(2)
Angle-Side-Angle Postulate for Proving Triangles Congruent
34(3)
Angle-Angle-Side Postulate for Proving Triangles Congruent
37(2)
Why Is Side-Side-Angle Not a Postulate for Proving Triangles Congruent?
39(1)
Why Is Angle-Angle-Angle Not a Postulate for Proving Triangles Congruent?
40(1)
Hypotenuse-Leg Postulate for Proving Triangles Congruent
41(5)
Corresponding Parts of Congruent Triangles Are Congruent
46(4)
Exercises
50(7)
3 Classifying Triangles
57(36)
Solving for the Angles in a Triangle
58(1)
Exterior Angle Theorem
59(3)
Classifying Triangles by Angle Measurements
62(4)
Isosceles, Equilateral, and Scalene Triangles
66(7)
Relationships of the Sides and Angles of Triangles
73(3)
Median, Altitude, and Angle Bisector
76(11)
Exercises
87(6)
4 Centers of a Triangle
93(16)
Centroid of a Triangle
94(2)
The Incenter of a Triangle
96(3)
The Orthocenter of a Triangle
99(1)
The Circumcenter of a Triangle
100(4)
The Euler Line
104(2)
Exercises
106(3)
5 Similarity
109(28)
Proportions in Similar Triangles
111(3)
Determining Whether Triangles Are Similar
114(2)
Perimeter and Area of Similar Triangles
116(2)
Parallel Lines Inside a Triangle
118(5)
Proportions of Similar Right Triangles
123(3)
Similar Triangle Proofs
126(6)
Exercises
132(5)
6 Getting to Know Right Triangles
137(28)
The Pythagorean Theorem
138(4)
Pythagorean Triples
142(1)
Special Right Triangles
142(10)
Right Triangle Trigonometry
152(5)
Word Problems
157(4)
Exercises
161(4)
7 Parallel Lines
165(26)
Alternate Interior Angles
166(3)
Corresponding Angles
169(3)
Alternate Exterior, Same-Side Interior, and Same-Side Exterior Angles
172(4)
Auxiliary Lines
176(3)
Proving That the Sum of the Angles of a Triangle Is 180°
179(1)
Determining If Lines Are Parallel
180(6)
Exercises
186(5)
8 Parallelograms
191(24)
Rectangles
198(2)
Rhombuses
200(2)
Squares
202(4)
Trapezoids
206(3)
Median of a Trapezoid
209(3)
Exercises
212(3)
9 Coordinate Geometry
215(31)
Distance Formula
218(4)
Using the Distance Formula to Classify Shapes
219(3)
Midpoint Formula
222(3)
Slope Formula
225(10)
Writing the Equations of Parallel and Perpendicular Lines
235(2)
Partitioning a Line Segment
237(5)
Exercises
242(4)
10 Transformations
Reflections
246(12)
Reflection Over the Y-Axis
246(2)
Reflection Over the X-Axis
248(1)
Reflection Over the Line y = x
248(1)
Reflecting a Point Over Horizontal and Vertical Lines
249(3)
Reflecting a Point Over an Oblique Line
252(4)
Finding the Equation for the Line of Reflection
256(2)
Point Reflections
258(1)
Rotations
258(4)
Summary of Rules for Rotations with the Center of Rotation at the Origin
259(1)
Rotation with Center of Rotation Not at the Origin
260(2)
Translations
262(2)
Dilation
264(9)
Dilations Not Centered at the Origin
268(5)
Composition of Transformations
273(4)
Exercises
277(4)
11 Circle Theorems Involving Angles and Segments
281(22)
Definition of Terms Related to a Circle
282(5)
Lengths of Intersecting Chords
287(2)
Finding the Length of Secant Segments
289(3)
Length of Tangent-Secant Segments from an External Point
292(1)
Angles Associated with the Circle
293(7)
Central Angle
293(1)
Inscribed Angle
294(2)
Angle Formed by Two Intersecting Chords
296(2)
Exterior Angles of a Circle
298(2)
Exercises
300(3)
12 Circumference and the Area of Circles
303(20)
Finding the Area of a Sector
305(4)
Finding the Length of the Arc of a Sector
309(4)
Standard Form of a Circle
313(1)
General Form of a Circle
314(2)
Graphing a Circle on the Coordinate Plane
316(4)
Exercises
320(3)
13 Volume of Three-Dimensional Shapes
323(62)
Cones
324(2)
Cylinders
326(3)
Prisms
329(5)
Square Pyramids
334(2)
Spheres
336(1)
From 2D to 3D
337(6)
Exercises
343(4)
Constructions
347(1)
Copying Segments and Angles
348(3)
Bisectors and Perpendicular and Parallel Lines
351(2)
Constructions Involving Perpendicular Lines
353(4)
Constructing Parallel Lines
357(2)
Construction Applications
359(6)
Constructing an Altitude and a Median
365(2)
Constructing a Square and Hexagon Inscribed in a Circle
367(3)
Constructing Transformations
370(11)
Exercises
381(4)
Answer Key 385(92)
Teacher's Guide 477
Allen Ma teaches high school geometry, algebra, pre-calculus, and trigonometry. He is a recipient of the Nassau County Long Island Math Teacher of the Year award.

Amber Kuang teaches high school honors pre-calculus, honors calculus, algebra 2/trigonometry, geometry, and discrete math. She is a New York State Regent Exams review instructor.