Muutke küpsiste eelistusi

E-raamat: Mutual Coupling Between Antennas

Edited by (University of Technology, Sydney and Macquarie University, Australia)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 18-Jun-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119564881
  • Formaat - PDF+DRM
  • Hind: 143,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 18-Jun-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119564881

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Mutual Coupling Between Antennas

A guide to mutual coupling between various types of antennas in arrays such as wires, apertures and microstrip patches or antennas co-sited on platforms

Mutual Coupling Between Antennas explores the theoretical underpinnings of mutual coupling, offers an up-to-date description of the physical effects of mutual coupling for a variety of antennas, and contains techniques for analysing and assessing its effects. The book puts the topic in historical context, presents an integral equation approach, includes the current techniques, measurement methods, and discusses the most recent advances in the field.

With contributions from noted experts on the topic, the book reviews practical aspects of mutual coupling and examines applications that clearly demonstrate where the performance is impacted both positively and negatively. Mutual Coupling Between Antennas contains information on how mutual coupling can be analysed with a wide range of methods from direct computer software using discrete methods, to integral equations and Greens function methods as well as approximate asymptotic methods. This important text:

  • Provides a theoretical background for understanding mutual coupling between various types of antennas
  • Describes the interaction that occurs between antennas, both planned and unplanned
  • Explores a key aspect of arrays in any wireless, radar or sensing system operating at radio frequencies
  • Offers a groundbreaking book on antenna mutual coupling

Written for antenna engineers, technical specialists, researchers and students, Mutual Coupling Between Antennas is the first book to examine mutual coupling between various types of antennas including wires, horns, microstrip patches, MIMO antennas, co-sited antennas and arrays in planar or conformal configurations.

Preface xv
Acknowledgments xvii
List of Contributors xix
Notation xxi
1 Introduction 1(8)
Trevor S. Bird
1.1 Aims and Scope
1(2)
1.2 Historical Perspective
3(1)
1.3 Overview of Text
4(3)
References
7(2)
2 Basics of Antenna Mutual Coupling 9(18)
Trevor S. Bird
2.1 Introduction
9(1)
2.2 Electromagnetic Field Quantities
9(3)
2.2.1 Definitions
9(2)
2.2.2 Field Representations in Source-Free Regions
11(1)
2.3 Mutual Coupling Between Elementary Sources
12(6)
2.3.1 Radiation
12(2)
2.3.2 Generalized Infinitesimal Current Elements
14(1)
2.3.3 Mutual Coupling Between Infinitesimal Current Elements
15(3)
2.4 Network Representation of Mutual Coupling
18(5)
2.4.1 Extension to Combination of Elements
18(1)
2.4.2 Mutual Impedance and Admittance Matrix Formulation
19(1)
2.4.3 Scattering Matrix Representation
20(3)
2.5 Radiation from Antennas in the Presence of Mutual Coupling
23(3)
2.5.1 Far-Field Radiation
23(2)
2.5.2 Magnetic Current Only
25(1)
2.5.3 Electric Current Only
25(1)
2.6 Conclusion
26(1)
References
26(1)
3 Methods in the Analysis of Mutual Coupling in Antennas 27(36)
Trevor S. Bird
3.1 Introduction
27(3)
3.2 Mutual Coupling in Antennas with Continuous Sources
30(4)
3.2.1 Impedance and Admittance with Continuous Sources
30(1)
3.2.2 Reaction
31(1)
3.2.3 Definition of Circuit Quantities
32(2)
3.3 On Finite and Infinite Arrays
34(2)
3.3.1 Finite Array Analysis by Element-by-Element Method
35(1)
3.3.2 Infinite Periodic Array Analysis
36(1)
3.4 Integral Equation Methods Used in Coupling Analysis
36(10)
3.4.1 Introduction
36(1)
3.4.2 Green's Function Methods
37(6)
3.4.2.1 Free-Space Green's Function for Harmonic Sources
38(2)
3.4.2.2 Free-Space Green's Function for Transient Sources
40(1)
3.4.2.3 Fields with Sources
40(3)
3.4.3 Solution by Weighted Residuals
43(3)
3.5 Some Other Methods Used in Coupling Analysis
46(8)
3.5.1 Unit Cell Analysis in Periodic Structure Method
46(5)
3.5.2 Mode Matching Methods
51(1)
3.5.3 Moment Methods
52(1)
3.5.4 Method of Characteristic Modes
52(1)
3.5.5 Minimum Scattering Element Method
53(1)
3.6 Practical Aspects of Numerical Methods in Mutual Coupling Analysis
54(4)
3.6.1 Introduction
54(1)
3.6.2 Numerical Quadrature
55(1)
3.6.3 Matrix Inversion
56(2)
3.7 Conclusion
58(1)
References
59(4)
4 Mutual Coupling in Arrays of Wire Antennas 63(24)
Trevor S. Bird
4.1 Introduction
63(1)
4.2 Formulation of the Problem
63(5)
4.2.1 Moment Method
66(1)
4.2.2 Moment Method Solution for the Dipole
67(1)
4.3 Mutual Impedance
68(8)
4.3.1 Closed Form Expressions for Mutual Impedance
70(3)
4.3.2 Asymptotic Approximations to Mutual Impedance
73(3)
4.4 Arrays of Wire Antennas
76(8)
4.4.1 Full-Wave Dipole Above a Perfect Ground
77(3)
4.4.2 The Yagi-Uda Array
80(3)
4.4.3 7 x 7 array of closely packed elements
83(1)
4.5 Concluding Remarks
84(1)
References
84(3)
5 Arrays of Planar Aperture Antennas 87(66)
Trevor S. Bird
5.1 Introduction
87(1)
5.2 Mutual Coupling in Waveguide and Horn Arrays
88(11)
5.2.1 Integral Equation Formulation
88(3)
5.2.2 Modal Representation
91(3)
5.2.3 Modeling of Profiled Horns and Mode Matching
94(3)
5.2.4 Asymptotic Approximation of Mutual Admittance
97(2)
5.3 Coupling in Rectangular Waveguides and Horns
99(15)
5.3.1 Self-Admittance of TE10 Mode
102(2)
5.3.2 Example of Mutual Coupling Between Different-Sized Waveguides
104(2)
5.3.3 Application to Horns
106(5)
5.3.4 Waveguide-Fed Slot Arrays
111(1)
5.3.5 Asymptotic Approximation of Coupling in Rectangular Apertures
112(2)
5.3.6 Coupling in Horns Approximated with Quadratic Phase
114(1)
5.4 Coupling in Arrays of Coaxial Waveguides and Horns
114(15)
5.4.1 Self-Admittance of TE11 Mode in Coaxial Waveguide
118(2)
5.4.2 TEM Mode Coupling in Coaxial Waveguide
120(3)
5.4.3 Asymptotic Approximation of Coupling in Coaxial Waveguide Apertures
123(4)
5.4.4 Coaxial and Circular Aperture Array Examples
127(2)
5.5 Mutual Coupling Between Apertures of General Cross-Section
129(6)
5.5.1 Elliptical Apertures
129(5)
5.5.2 General Apertures
134(1)
5.6 Coupling in Apertures Loaded with Dielectrics and Metamaterials
135(13)
5.6.1 Dielectric-Loaded Apertures
136(6)
5.6.2 Metamaterial-Loaded Apertures
142(6)
5.7 Concluding Remarks
148(1)
References
148(5)
6 Arrays of Microstrip Patch Antennas 153(24)
Trevor S. Bird
6.1 Introduction
153(2)
6.2 Representation of Mutual Coupling Between Patch Antennas
155(12)
6.2.1 E-Current Model of Coupling
159(3)
6.2.2 Cavity Model (H-Model) of Coupling
162(3)
6.2.3 Full-Wave Solution
165(2)
6.3 Applications of Microstrip Arrays
167(7)
6.3.1 Mutual Coupling Between Microstrip Patches
167(1)
6.3.2 Steering by Switching Parasitic Elements
167(3)
6.3.3 A Metasurface from Microstrip Patches
170(4)
6.4 Concluding Remarks
174(1)
References
174(3)
7 Mutual Coupling Between Antennas on Conformal Surfaces 177(44)
Trevor S. Bird
7.1 Introduction
177(1)
7.2 Mutual Admittance of Apertures on Slowly Curving Surfaces
178(6)
7.2.1 Green's Function Formulation for Curved Surfaces
178(1)
7.2.2 The Cylinder
179(3)
7.2.3 The Sphere
182(2)
7.3 Asymptotic Solution for Fields Near Convex Surfaces
184(3)
7.3.1 Review of Literature for Convex Surfaces
184(2)
7.3.2 Asymptotic Solution for the Surface Fields
186(1)
7.4 Mutual Coupling of Apertures in Quadric Surfaces
187(14)
7.4.1 Closed-Form Expressions for Mutual Coupling Between Rectangular Waveguides in a Cylinder
188(6)
7.4.2 Expressions for Mutual Coupling Between Circular Waveguides in a Sphere
194(3)
7.4.3 Mutual Coupling Between Microstrip Patches on a Cylinder
197(4)
7.5 Extension of Canonical Solution to Large Convex Surfaces with Slowly Varying Curvature
201(9)
7.6 Applications of Coupling on Curved Surfaces
210(6)
7.6.1 Mutual Coupling in a Waveguide Array on a Cylinder
210(1)
7.6.2 Mutual Coupling Between Monopoles on a Cylinder
211(4)
7.6.3 Mutual Coupling Between Waveguides on an Ellipsoid
215(1)
7.7 Conclusion
216(1)
References
217(4)
8 Mutual Coupling Between Co-Sited Antennas and Antennas on Large Structures 221(36)
Derek McNamara
Eqab Almajali
8.1 Preliminaries and Assumptions
221(2)
8.1.1 The Problem at Hand
221(2)
8.1.2 Course Adopted
223(1)
8.2 Full-Wave CEM Modeling View of a Single Antenna
223(2)
8.3 Full-Wave CEM Modeling View of Coupled Antennas in the Presence of a Host Platform
225(5)
8.3.1 Field Point of View
225(2)
8.3.2 Two-Port Network Parameter Point of View
227(3)
8.4 Useful Expressions for Coupling in the Presence of a Host Platform
230(6)
8.4.1 Motivation
230(1)
8.4.2 Reciprocity and Reaction Theorems Revisited
230(3)
8.4.3 Generalized Reaction Theorem
233(1)
8.4.4 Expressions for Mutual Impedance and Open Circuit Voltage
234(1)
8.4.5 Power Coupling
235(1)
8.5 Supplementary Comments on CEM Modeling Methods
236(7)
8.6 Full-Wave CEM Modeling of Coupled Antennas on a Platform - The Ideal
243(1)
8.7 Reduced Complexity Antenna Electromagnetic Models
244(3)
8.7.1 Necessity for Simplified Antenna Models
244(1)
8.7.2 Huygens' Box Model
244(2)
8.7.3 Spherical Wave Expansion Models
246(1)
8.7.4 Infinitesimal Dipole Models
246(1)
8.7.5 Planar Aperture Models
247(1)
8.7.6 Point Source Models
247(1)
8.8 CEM Modeling of Coupled Antennas on a Platform - Pragmatic Approaches
247(2)
8.9 Co-Sited Antenna Coupling Computation Examples
249(2)
8.10 Concluding Remarks
251(1)
References
251(6)
9 Mutual Coupling and Multiple-Input Multiple-Output (MIMO) Communications 257(30)
Karl F. Warnick
9.1 Introduction
257(1)
9.2 Previous Work on Mutual Coupling and MIMO
258(2)
9.3 Basics of MIMO Communications
260(4)
9.3.1 MIMO Channel Capacity
261(1)
9.3.2 Eigenchannels and the Water-Filling Solution
261(1)
9.3.3 Eigenchannels in MIMO Systems and Beamforming Arrays
262(1)
9.3.4 Reference Planes and the Intrinsic Channel Matrix
263(1)
9.4 Mutual Coupling and MIMO Transmitting Arrays
264(9)
9.4.1 Radiated Electric Field and Embedded Element Patterns
265(1)
9.4.2 Pattern Overlap Matrix, Conservation of Energy, and Mutual Coupling
266(1)
9.4.3 Gain and Directivity in the Overlap Matrix Formulation
267(1)
9.4.4 Overlap Matrix for Isotropic Radiators
268(1)
9.4.5 Mutual Coupling for Closely Spaced Elements, Superdirectivity, and Q-Factor Bounds
268(1)
9.4.6 EEPs, Mutual Coupling, and Minimum Scattering Antennas
269(1)
9.4.7 Mutual Coupling and Interactions Between Elements
269(2)
9.4.8 Transmitter Power Constraint
271(1)
9.4.9 Impedance Matching at the Transmitter
271(2)
9.5 Mutual Coupling and MIMO Receiving Arrays
273(9)
9.5.1 Receive Array Signal and Noise Model
273(1)
9.5.2 Receive Array Thevenin Equivalent Network
274(1)
9.5.3 Loaded Receive Array Output Voltages
275(1)
9.5.4 External Noise and Loss Noise
276(1)
9.5.5 Signal Correlation Matrix
277(1)
9.5.6 Signal Correlation in a Rich Multipath Environment
277(1)
9.5.7 Mutual Coupling, Noise Matching, and Equivalent Receiver Noise
278(10)
9.5.7.1 Active Impedances for Receiving Arrays
279(1)
9.5.7.2 Equivalent Receiver Noise Temperature and Active Impedance Matching
280(1)
9.5.7.3 Noise Matching Efficiency
281(1)
9.6 Conclusion
282(1)
References
283(4)
10 Mutual Coupling in Beamforming and Interferometric Antennas 287(38)
Hoi Shun Antony Lui
Trevor S. Bird
10.1 Introduction
287(1)
10.2 The Array Manifold
288(1)
10.3 Direction-of-Arrival Algorithms
288(4)
10.3.1 Matrix Pencil Method for Direction of Arrival Estimation
290(2)
10.4 Maximum Gain Design for Single and Multiple Beams
292(10)
10.4.1 Penalty Function Optimization of Array Parameters
296(2)
10.4.2 Method of Successive Projections
298(1)
10.4.3 Comparison of Penalty Functions and Successive Projections
299(3)
10.5 Direction-of-Arrival Estimation
302(17)
10.5.1 No Coupling Situation
303(5)
10.5.1.1 Cramer-Rao Lower Bound
303(1)
10.5.1.2 Four-Element Linear Arrays with Different Apertures (Two Incoming Signals)
304(2)
10.5.1.3 Fixed Aperture Uniform Linear Arrays with Different Numbers of Elements (Two Incoming Signals)
306(2)
10.5.1.4 Fixed Aperture Uniform Linear Arrays with Different Number of Elements (Three Incoming Signals)
308(1)
10.5.2 Perturbation Due to Mutual Coupling
308(18)
10.5.2.1 Eight-Element Linear Arrays with Different Apertures (Three Incoming Signals)
310(6)
10.5.2.2 Fixed Array Aperture with Different Numbers of Elements (Two Incoming Signals)
316(3)
10.6 Conclusion
319(1)
References
320(5)
11 Techniques for Minimizing Mutual Coupling Effects in Arrays 325(32)
Hoi Shun Antony Lui
Trevor S. Bird
11.1 Introduction
325(1)
11.2 Mutual Coupling in Transmitting and Receiving Arrays
326(4)
11.2.1 The Mutual Coupling Path
326(1)
11.2.2 Moment Method Analysis
327(3)
11.3 Typical Methods for Minimizing Mutual Coupling
330(2)
11.3.1 Aperture Field Taper
331(1)
11.3.2 Electromagnetic Fences
331(1)
11.3.3 Other Approaches to Compensation
331(1)
11.4 Techniques for Practical Mutual Coupling Compensation
332(22)
11.4.1 Conventional Mutual Impedance Method
332(3)
11.4.2 Full-Wave Method
335(2)
11.4.3 Receiving-Mutual-Impedance Method
337(10)
11.4.3.1 Determination of the Receiving Mutual Impedance
340(3)
11.4.3.2 Comparison Between Different Mutual Impedances and Direction-Finding Applications
343(4)
11.4.4 Calibration Method
347(1)
11.4.5 Compensation Through Beamforming Network
348(1)
11.4.6 Compensation in the Aperture
349(5)
11.5 Concluding Remarks
354(1)
References
355(2)
12 Noise Performance in the Presence of Mutual Coupling 357(12)
Christophe Craeye
Jean Cavillot
Eloy de Lera Acedo
12.1 Generalities About Noise in Receiving Arrays
357(2)
12.2 Coupling of Noise Originating from LNAs
359(3)
12.3 Coupling of Noise Originating from Lossy Antenna Arrays
362(1)
12.4 Coupling of Noise Originating from the Far-Field Environment
363(3)
12.5 Conclusion
366(1)
References
367(2)
13 Methods for Analyzing Mutual Coupling in Large Arrays 369(20)
Christophe Craeye
Ha Bui Van
13.1 Goals of Numerical Mutual Coupling Analysis
369(3)
13.2 Periodic Method of Moments
372(2)
13.3 Iterative Solution Techniques
374(2)
13.4 Macro Basis Functions
376(4)
13.5 Pattern Transformations
380(2)
13.6 Optimization
382(1)
13.7 Conclusion
383(1)
References
384(5)
14 Measurement of Mutual Coupling Effects 389(24)
Alpha O. Bah
Trevor S. Bird
14.1 Introduction
389(1)
14.2 Instrumentation
389(2)
14.3 Basic Measurement of Static Element Coupling and Radiation
391(7)
14.3.1 Measurement of Coupling Coefficients
391(2)
14.3.1.1 Input Reflection Coefficient and Insertion Loss
392(1)
14.3.1.2 Mutual Coupling Coefficients
393(1)
14.3.2 Measurement of Element Radiation
393(5)
14.4 Measurement of Active Element Coupling and Array Radiation
398(11)
14.4.1 Measurement of Active Element Patterns
398(1)
14.4.2 Measurement of Array Radiation Patterns
399(4)
14.4.2.1 Pattern Multiplication Method
400(2)
14.4.2.2 The Unit Excitation Active Element Pattern Method
402(1)
14.4.2.3 The Average Active Element Pattern Method
402(1)
14.4.2.4 The Hybrid Active Element Pattern Method
403(1)
14.4.3 Measurement of Input Mismatch and Coupling
403(4)
14.4.3.1 Mutual Coupling Coefficient Method
404(1)
14.4.3.2 Directional Coupler Method
405(1)
14.4.3.3 Power Divider Method
406(1)
14.4.4 Measurement of Gain
407(2)
14.5 Conclusion
409(1)
References
410(3)
Appendix A Useful Identities 413(6)
Trevor S. Bird
A.1 Vector Identities
413(1)
A.2 Geometric Identities
414(1)
A.3 Transverse Representation of the Electromagnetic Field
415(1)
A.4 Useful Functions
415(1)
A.5 Complex Fresnel Integrals
416(1)
A.6 Hypergeometric Function
417(1)
References
417(2)
Appendix B Bessel and Hankel Functions 419(6)
Trevor S. Bird
B.1 Properties
419(3)
B.2 Series Involving Bessel Functions
422(1)
B.3 Integrals of Bessel Functions
422(2)
B.4 Lommel-Type Integrals
424(1)
References
424(1)
Appendix C Properties of Hankel Transform Functions 425(4)
Trevor S. Bird
References
426(3)
Appendix D Properties of Surface Fock Functions 429(4)
Trevor S. Bird
D.1 Definitions
429(1)
D.2 Soft Surface Functions (m > 0)
429(2)
D.3 Hard Surface Fock Functions (m < 0)
431(1)
D.4 Hard Surface Fock Function of the First Kind
432(1)
References
432(1)
Appendix E Four Parameter Noise Representation of an Amplifier 433(2)
Christophe Craeye
Jean Cavillot
Eloy de Lera Acedo
Reference
434(1)
Appendix F Equivalent Noise Currents 435(2)
Christophe Craeye
Jean Cavillot
Eloy de Lera Acedo
Reference
436(1)
Appendix G Basic Reciprocity Result 437(2)
Christophe Craeye
Jean Cavillot
Eloy de Lera Acedo
Appendix H On the Extended Admittance Matrix 439(2)
Christophe Craeye
Ha Bui Van
Index 441
Trevor S. Bird, PhD, is Principal Antengenuity, Distinguished Visiting Professor University of Technology, Sydney, and Adjunct Professor Macquarie University, Australia.