Muutke küpsiste eelistusi

E-raamat: MXene Membranes for Separations

(Tsinghua University, China), (South China University of Technology), (South China University of Technology)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2022
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527828838
  • Formaat - PDF+DRM
  • Hind: 143,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jan-2022
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527828838

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

MXene Membranes for Separations Explore critical and groundbreaking MXene applications and technologies

In MXene Membranes for Separations, a team of distinguished researchers delivers a comprehensive and instructive summary of the latest research and techniques in the development of MXene. It offers an insightful view of MXene properties as a membrane in separation applications, including gas separation, ion sieving, solvent dehydration, nanofiltration, and ultrafiltration.

Covering various aspects of two-dimensional membranes based on MXene materials, the book summarizes the separation mechanism, compares separation performances, and analyzes the advantages and disadvantages of different approaches. It also considers the research and industrial prospects of current MXene membranes for separation applications on nanofiltration, gas separation, ion sieving, solvent dehydration, and water/oil separation.

The book also includes:





A thorough introduction to 2D membranes, including membrane development, separation mechanisms, and fabrication methods Comprehensive explorations of MXene nanosheets and membranes, including the preparation and characterization of MXene nanosheets and membranes Practical discussions of MXene membranes for the isolation of antibiotics, including explorations of physical adsorption and advanced oxidation In-depth examinations of MXene membranes for ion separation

Perfect for membrane scientists, materials scientists, and inorganic chemists, MXene Membranes for Separations will also earn a place in the libraries of complex chemists and engineering scientists seeking a timely overview of critical MXene applications.
Preface ix
About the Authors xi
Acknowledgment xiii
Abbreviations and Symbols xv
1 Introduction
1(8)
1.1 Membrane Development at a Glance
1(1)
1.2 Two-Dimensional Membranes
1(1)
1.3 Separation Mechanisms of 2D Membranes
2(2)
1.4 Fabrication Methods for 2D Membranes
4(2)
1.5 Applications of 2D Membranes
6(3)
References
6(3)
2 Types of 2D Material-Based Membranes
9(16)
2.1 Porous Two-Dimensional Nanosheet-Based Membranes
9(4)
2.1.1 Zeolite 2D Membranes
9(1)
2.1.2 Metal-Organic Framework 2D Membranes
10(1)
2.1.3 Covalent Organic Framework (COF) 2D Membranes
11(1)
2.1.4 Graphitic Carbon Nitride (g-C3N4) Membranes
12(1)
2.2 Nonporous 2D Nanosheet-Based Membranes
13(12)
2.2.1 Graphene-Based Membranes
13(2)
2.2.2 Layered Double Hydroxide (LDH) Membranes
15(1)
2.2.3 Transition Metal Dichalcogenide (TMD) Membranes
15(1)
2.2.4 MXene Membranes (Typically Ti3C2Tx)
16(2)
References
18(7)
3 MXene Nanosheets and Membranes
25(18)
3.1 Preparation and Characterization of MXene Nanosheets
25(9)
3.1.1 Top-down Synthesis
25(6)
3.1.2 Bottom-up Synthesis
31(3)
3.2 Preparation and Characterization of MXene Membranes
34(9)
References
40(3)
4 MXene Membranes for Nanofiltration
43(18)
4.1 Introduction
43(1)
4.2 Separation Performance of MXene-Based Nanofiltration Membranes
44(13)
4.3 Summary
57(4)
References
57(4)
5 MXene Membranes for the Isolation of Antibiotics
61(28)
5.1 Introduction
61(1)
5.2 Physical Adsorption
62(6)
5.3 Advanced Oxidation
68(4)
5.4 Membrane Separation
72(12)
5.5 Summary
84(5)
References
84(5)
6 MXene-Based Membranes for Gas Separation
89(16)
6.1 Introduction
89(1)
6.2 Gas Separation Performance of MXene-Based Membranes
90(11)
6.3 Summary
101(4)
References
102(3)
7 MXene Membranes for Ion Separation
105(24)
7.1 Introduction
105(1)
7.2 Self-cross-linked MXene Membranes for Monovalent Metal Ion Sieving
106(6)
7.2.1 Preparation of Self-cross-linked MXene Membranes
106(1)
7.2.2 Monovalent Metal Ion-sieving Performance of Self-cross-linked MXene Membranes
107(2)
7.2.3 Characterization of Self-cross-linked MXene Membranes
109(3)
7.3 Thermally Cross-Linked MXene Membranes for Heavy Metal Ion Separation by a Voltage-supported Process
112(5)
7.3.1 Mixed-ion Sieving and Exclusion of the Heavy Metal Ion Pb2+
113(2)
7.3.2 Characterization of Thermally Cross-Linked MXene Membranes
115(2)
7.4 Ultrathin MXene-Derived Membranes by Sinter-cross-linking with Tunable Interlayer Spacing
117(4)
7.4.1 Properties and Ion-rejection Performance of Sinter-cross-linked MXene Membranes
117(3)
7.4.2 Characterization of Sinter-cross-linked MXene Membranes and MXene Nanosheets at Different Sintering Temperatures
120(1)
7.5 Al3+-cross-linked MXene Membranes
121(5)
7.5.1 Preparation and Characterization of Al3+-cross-linked MXene Membranes
122(1)
7.5.2 Ion-sieving Performance of Al3+-cross-linked MXene Membranes
123(3)
7.6 Summary
126(3)
References
126(3)
8 MXene Membrane for Oil/Water Emulsion Separation
129(28)
8.1 Introduction
129(1)
8.2 Functional Polymer Layer on Support
130(4)
8.3 Low-Dimensional Materials
134(17)
8.4 Summary
151(6)
References
151(6)
9 MXene Membranes for Salinity Gradient Energy Conversion
157(18)
9.1 Introduction
157(1)
9.2 Performance of MXene Membranes for Salinity Gradient Energy Conversion
158(11)
9.3 Summary
169(6)
References
170(5)
10 Scale-Up of MXene Membranes
175(22)
10.1 Introduction
175(1)
10.2 Scale-Up of 2D Membranes
176(15)
10.2.1 Spin Coating
177(1)
10.2.2 Spray Coating
177(2)
10.2.3 Drop Coating and Dip Coating
179(1)
10.2.4 Doctor Blade Method
179(2)
10.2.5 Electrophoretic Deposition (EPD)
181(10)
10.3 Summary
191(6)
References
192(5)
11 Perspectives
197(6)
11.1 Further Applications of MXene Nanosheets
197(1)
11.2 Challenges and Outlook for MXene Membranes
198(5)
11.2.1 Stability of MXene Nanosheets Must Be Improved
198(1)
11.2.2 Scalable Fabrication of MXene Membranes with Suitable Interlayer Channels Is Required
198(1)
11.2.3 Operating Time of MXene Membranes under Realistic Operation Conditions Must Be Extended
199(1)
11.2.4 Fundamentals of Mass Transport Mechanisms in Confined Nanochannels/Sub-nanochannels Within MXene Membranes Has to Be Studied
199(1)
References
200(3)
Index 203
Haihui Wang, PhD, is Professor at Tsinghua University in China. His research is focused on inorganic membranes, membrane reactors, and energy materials.

Yanying Wei, PhD, is Professor at South China University of Technology. Her research focuses on novel 2D nanosheet membranes and MOF membranes.

Li Ding, PhD, is a postdoctoral research fellow at South China University of Technology. His research is focused on MXene-based membranes for efficient separation applications and mass transport in nanochannels.