Muutke küpsiste eelistusi

E-raamat: Nano-CMOS Gate Dielectric Engineering

(City University of Hong Kong, Kowloon)
  • Formaat: 248 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439849606
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 248 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781439849606

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wong (City U. of Hong Dong) explains how high-k gate dielectric integration can enable further CMOS device downsizing to the nanoscale range while acknowledging the inherent limitations on MOS device performance. Appropriate for graduate students, the text describes the atomic and electronic structures of transition metal oxides and rare earth metal oxides, assesses potential complex oxides for sub-nanometer MOS gate dielectric applications, and examines the interfacial bonding structure, strain, and relaxation at the high-k/silicon interface. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

According to Moore’s Law, not only does the number of transistors in an integrated circuit double every two years, but transistor size also decreases at a predictable rate. At the rate we are going, the downsizing of CMOS transistors will reach the deca-nanometer scale by 2020. Accordingly, the gate dielectric thickness will be shrunk to less than half-nanometer oxide equivalent thickness (EOT) to maintain proper operation of the transistors, leaving high-k materials as the only viable solution for such small-scale EOT.

This comprehensive, up-to-date text covering the physics, materials, devices, and fabrication processes for high-k gate dielectric materials, Nano-CMOS Gate Dielectric Engineering systematically describes how the fundamental electronic structures and other material properties of the transition metals and rare earth metals affect the electrical properties of the dielectric films, the dielectric/silicon and the dielectric/metal gate interfaces, and the resulting device properties. Specific topics include the problems and solutions encountered with high-k material thermal stability, defect density, and poor initial interface with silicon substrate. The text also addresses the essence of thin film deposition, etching, and process integration of high-k materials in an actual CMOS process.

Fascinating in both content and approach, Nano-CMOS Gate Dielectric Engineering explains all of the necessary physics in a highly readable manner and supplements this with numerous intuitive illustrations and tables. Covering almost every aspect of high-k gate dielectric engineering for nano-CMOS technology, this is a perfect reference book for graduate students needing a better understanding of developing technology as well as researchers and engineers needing to get ahead in microelectronic engineering and materials science.

Arvustused

... this book, by covering almost every aspect of high-k gate dielectric engineering for nano-CMOS technology, is as timely as ever for device and process engineers. Though it involves quite a lot of physics, it is never less than fascinating, through its many intuitive illustrations and tables.

From the Foreword by Hiroshi Iwai, PhD, Professor, Tokyo Institute of Technology, Japan

Foreword vii
Preface xi
List of Abbreviations
xiii
1 Overview of CMOS Technology
1(50)
1.1 Introduction
1(2)
1.2 MOS Transistor: A Quick Introduction to Classical Models
3(6)
1.2.1 Current-Voltage Characteristics
3(3)
1.2.2 Threshold Voltage
6(3)
1.3 Short-Channel Effects and Short-Channel Modifications
9(13)
1.3.1 Effect on I-V Characteristics
10(1)
1.3.2 Subthreshold Conduction
11(2)
1.3.3 Short-Channel Effects
13(2)
1.3.3 Threshold Voltage Roll-Off
15(1)
1.3.4 Drain-Induced Barrier Lowering (DIBL)
15(2)
1.3.5 Gate Leakage Current
17(1)
1.3.5.1 Direct-Tunneling
18(1)
1.3.5.2 Fowler-Nordheim Tunneling
19(1)
1.3.5.3 Poole-Frenkel Emission and Trap-Assisted Tunneling
20(2)
1.4 Features and Uniqueness of MOS Transistor
22(2)
1.5 MOS in Deca-Nanometer
24(6)
1.6 Technology Trends and Options
30(13)
1.6.1 Technology Trends
30(1)
1.6.2 Technology Options
31(1)
1.6.2.1 Device Structures
32(2)
1.6.2.2 Channel Engineering
34(3)
1.6.2.3 Source and Drain Engineering
37(1)
1.6.2.4 Gate Stack Engineering
38(3)
1.6.3 More than Moore
41(2)
1.7 Summary
43(1)
References
44(7)
2 High-k Dielectrics
51(62)
2.1 High-k Candidates
51(3)
2.2 Electronic Structure of Transition Metals and Rare Earth Metals
54(3)
2.2.1 Electronegativity
54(2)
2.2.2 Bond Radius
56(1)
2.3 Material Properties of Elemental Transition Metal and Rare Metal Oxides
57(17)
2.3.1 Atomic and Electronic Structures
57(5)
2.3.2 Electronic Structure of Some High-k Oxides
62(1)
2.3.2.1 Electronic Structure of Aluminum Oxide
62(2)
2.3.2.2 Electronic Structure of Crystalline Hafnium Oxide
64(3)
2.3.2.3 Electronic Structure of Crystalline Zirconium Oxide
67(1)
2.3.2.4 Electronic Structure of Rare Earth Metal Oxides
68(6)
2.4 Bandgap and Band Offset Energies
74(3)
2.5 Bond Ionicity and Dielectric Constant
77(2)
2.6 Carrier Effective Masses
79(2)
2.7 Thermal Stability
81(5)
2.7.1 Crystallization
81(2)
2.7.2 Decomposition and Si Out-Diffusion
83(3)
2.8 Disorders and Defects
86(18)
2.8.1 Intrinsic Oxygen Vacancies
88(6)
2.8.2 Oxygen Interstitials
94(2)
2.8.3 Grain Boundary States
96(1)
2.8.4 Extrinsic Defects
97(6)
2.8.5 High-k/Si Interface Traps
103(1)
2.9 Summary
104(1)
References
105(8)
3 Complex Forms of High-k Oxides
113(26)
3.1 Introduction
113(1)
3.2 Silicates and Aluminates Pseudo-Binary Alloys
114(4)
3.3 Stoichiometric Binary Alloys
118(2)
3.4 Doping
120(8)
3.5 Thermal Stability and Phase Separation
128(2)
3.6 Summary
130(4)
References
134(5)
4 Dielectric Interfaces
139(28)
4.1 Introduction
139(1)
4.2 High-k/Silicon Interface
140(14)
4.2.1 Interfacial Bonding
140(8)
4.2.2 Bond Strain, Relaxation, and Phase Diagrams
148(4)
4.2.3 Band Offsets
152(2)
4.3 High-k/Metal Interface
154(7)
4.3.1 Need of Metal Gate
154(2)
4.3.2 Band Offset Energies
156(1)
4.3.3 Interface Stability
157(4)
4.4 Summary
161(1)
References
161(6)
5 Impacts on Device Operation
167(36)
5.1 Introduction
167(1)
5.2 Gate Leakage Current
167(6)
5.2.1 Current Conduction Mechanisms
168(3)
5.2.2 Parameters Governing the Charge Transport
171(2)
5.3 Threshold Voltage Control and Fermi-Level Pinning
173(7)
5.4 Channel Mobility
180(2)
5.5 Subthreshold Characteristics
182(4)
5.6 Dielectric Breakdown
186(3)
5.7 Hot-Carrier Effects
189(4)
5.8 Temperature Instabilities
193(3)
5.9 Summary
196(1)
References
196(7)
6 Fabrication Issues
203(18)
6.1 Process Integration
203(4)
6.2 Atomic Layer Deposition
207(4)
6.3 Metal Organic Chemical Vapor Deposition
211(1)
6.4 Physical Vapor Deposition
212(1)
6.5 Etching
213(2)
6.6 Summary
215(1)
References
215(6)
7 Conclusions
221(4)
Appendix A Fundamental Physical Constants and Unit Conversions 225(2)
Appendix B Properties of Si and SiO2 227(2)
Index 229
Hei Wong received a B.Sc. degree iIi electronics from the Chinese University of Hong Kong and a Ph.D. in electrical and electronic engineering from the University of Hong Kong. Dr. Wong joined the faculty of the Department of Electronic Engineering at City University of Hong Kong in 1989 and is currently a full professor of the Department. He was a visiting professor for the 21 Century Centre of Excellent (COE21) for Photonics-Nanodevice Integration Engineering, Tokyo Institute of Technology, Japan. Dr. Wong was the chair for the IEEE ED/SSC Hong Kong Joint Chapter during 2002-2003. He is a member of the international steering committees, technical program committees, and organizing committees for many international and local conferences.