Muutke küpsiste eelistusi

E-raamat: Nanocellulose Polymer Nanocomposites: Fundamentals and Applications

  • Formaat - EPUB+DRM
  • Hind: 243,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Biorenewable polymers based nanomaterials are rapidly emerging as one of the most fascinating materials for multifunctional applications. Among biorenewable polymers, cellulose based nanomaterials are of great importance due to their inherent advantages such as environmental friendliness, biodegradability, biocompatibility, easy processing and cost effectiveness, to name a few. They may be produced from biological systems such as plants or be chemically synthesised from biological materials.

This book summarizes the recent remarkable achievements witnessed in green technology of cellulose based nanomaterials in different ?elds ranging from biomedical to automotive. This book also discusses the extensive research developments for next generation nanocellulose-based polymer nanocomposites. The book contains seventeen chapters and each chapter addresses some specific issues related to nanocellulose and also demonstrates the real potentialities of these nanomaterials in different domains.

The key features of the book are:

  • Synthesis and chemistry of nanocellulose from different biorenewable resources
  • Different characterization of nanocellulosic materials and their respective polymer nanocomposites
  • Physico-chemical, thermal and mechanical investigation of nanocellulose based polymer nanocomposites
  • Provides elementary information and rich understanding of the present state-of- art of nanocellulose-based materials
  • Explores the full range of applications of different nanocellulose-based materials.
Preface xvii
Part 1 SYNTHESIS AND CHARACTERIZATION OF NANOCELLULOSE-BASED POLYMER NANOCOMPOSITES
1 Nanocellulose-Based Polymer Nanocomposites: An Introduction
3(14)
Manju Kumari Thakur
Vijay Kumar Thakur
Raghavan Prasanth
1.1 Introduction
3(2)
1.2 Nanocellulose: Source, Structure, Synthesis and Applications
5(7)
1.3 Conclusions
12(5)
References
13(4)
2 Bacterial Cellulose-Based Nanocomposites: Roadmap for Innovative Materials
17(48)
Ana R. P. Figueiredo
Carla Vilela
Carlos Pascoal Neto
Armando J. D. Silvestre
Carmen S. R. Freire
2.1 Introduction
17(1)
2.2 Bacterial Cellulose Production, Properties and Applications
18(10)
2.2.1 Bacterial Cellulose Production
18(7)
2.2.2 Bacterial Cellulose Properties and Applications
25(3)
2.3 Bacterial Cellulose-Based Polymer Nanocomposites
28(13)
2.3.1 BC/Natural Polymers Nanocomposites
28(7)
2.3.2 BC/Water-Soluble Synthetic Polymer Nanocomposites
35(1)
2.3.3 BC / Thermoplastic (and Thermosetting) Nanocomposites
36(5)
2.3.4 BC-Based Electroconductive Polymer Nanocomposites
41(1)
2.4 Bacterial Cellulose-Based Hybrid Nanocomposite Materials
41(14)
2.4.1 Bacterial Cellulose Hybrids with Silver Nanoparticles (BC/Ag NPs)
42(2)
2.4.2 Bacterial Cellulose Hybrids with Miscellaneous Metallic Nanoparticles
44(1)
2.4.3 Bacterial Cellulose Hybrids with Silica Nanoparticles (BC/SiO2 NPs)
45(2)
2.4.4 Bacterial Cellulose Hybrids with Titanium Oxide Nanoparticles (BC/TiO2 NPs)
47(1)
2.4.5 Bacterial Cellulose Hybrids with Iron Oxides (BC/FexOy NPs)
48(2)
2.4.6 Bacterial Cellulose Hybrids with Hydroxyapatite (BC/HAp NPs)
50(1)
2.4.7 Bacterial Cellulose Hybrids with Carbon Allotropes
51(2)
2.4.8 Miscellaneous Bacterial Cellulose Hybrids
53(1)
2.4.9 Final Remarks and Future Perspectives
54(1)
2.5 Acknowledgements
55(10)
References
55(10)
3 Polyurethanes Reinforced with Cellulose
65(24)
Maria L. Auad
Mirna A. Mosiewicki
Norma E. Marcovich
3.1 Introduction
65(2)
3.2 Conventional Polyurethanes Reinforced with Nanocellulose Fibers
67(9)
3.3 Waterborne Polyurethanes Reinforced with Nanocellulose Fibers
76(2)
3.4 Biobased Polyurethanes Reinforced with Nanocellulose Fibers
78(6)
3.4.1 Biobased Composites Obtained by Using Organic Solvents
78(5)
3.4.2 Biobased Composites Obtained by Using Water as a Solvent
83(1)
3.5 Conclusions and Final Remarks
84(5)
References
85(4)
4 Bacterial Cellulose and Its Use in Renewable Composites
89(42)
Dianne R. Ruka
George P. Simon
Katherine M. Dean
4.1 Introduction
89(2)
4.2 Cellulose Properties and Production
91(14)
4.2.1 Introduction to Cellulose
91(1)
4.2.2 Bacterial Cellulose
92(13)
4.3 Tailor-Designing Bacterial Cellulose
105(9)
4.3.1 Modifying the Properties of Bacterial Cellulose
105(1)
4.3.2 In-Situ Modifications
106(2)
4.3.3 Post Modifications
108(6)
4.4 Bacterial Cellulose Composites
114(7)
4.4.1 Introduction
114(1)
4.4.2 Renewable Matrix Polymers
115(1)
4.4.3 Bacterial Cellulose Composites
115(6)
4.5 Biodegradability
121(2)
4.6 Conclusions
123(8)
References
123(8)
5 Nanocellulose-Reinforced Polymer Matrix Composites Fabricated by In-Situ Polymerization Technique
131(32)
Dipa Ray
Sunanda Sain
5.1 Introduction
131(1)
5.2 Cellulose as Filler in Polymer Matrix Composites
132(6)
5.2.1 Source
132(1)
5.2.2 Structure
133(1)
5.2.3 Properties
133(1)
5.2.4 Cellulose Nanofillers
133(1)
5.2.5 Extraction of Cellulose Nanofillers
134(2)
5.2.6 Advantages and Disadvantages of Cellulose Nanofillers
136(1)
5.2.7 Surface Modification of Cellulose Nanofillers
137(1)
5.3 Cellulose Nanocomposites
138(1)
5.4 In-Situ Polymerized Cellulose Nanocomposites
138(2)
5.5 Novel Materials with Wide Application Potential
140(14)
5.5.1 Bone Defect Repair and Bone Tissue Engineering
140(2)
5.5.2 Electrically Active Paper
142(4)
5.5.3 Nanostructured Porous Materials for Drug Delivery or as Bioactive Compounds
146(2)
5.5.4 Surface Coating Applications
148(4)
5.5.5 Biobased Green Nanocomposites
152(2)
5.6 Effect of In-Situ Polymerization on Biodegradation Behavior of Cellulose Nanocomposites
154(3)
5.7 Future of Cellulose Nanocomposites
157(6)
References
159(4)
6 Multifunctional Ternary Polymeric Nanocomposites Based on Cellulosic Nanoreinforcements
163(36)
D. Puglia
E. Fortunati
C. Santulli
J. M. Kenny
6.1 Introduction
163(3)
6.2 Cellulosic Reinforcements (CR)
166(5)
6.2.1 Microfibrillated Cellulose (MFC)
167(1)
6.2.2 Nanocrystalline Cellulose (NCC)
168(2)
6.2.3 Bacterial Cellulose (BC)
170(1)
6.3 Interaction of CNR with Different Nanoreinforcements
171(8)
6.3.1 CNR and Metallic Nanoparticles
172(3)
6.3.2 CNR and Ceramic Nanoparticles
175(1)
6.3.3 CNR and Carbon-Based Nanoparticles
176(1)
6.3.4 CNR and Biological Nanoreinforcements
177(2)
6.4 Ternary Polymeric Systems Based on CNR
179(11)
6.4.1 Thermoplastic Matrices and CNR-Based Systems
180(6)
6.4.2 Thermosetting Matrices and CNR-Based Systems
186(4)
6.5 Conclusions
190(9)
Acknowledgments
191(1)
References
191(8)
7 Effect of Fiber Length on Thermal and Mechanical Properties of Polypropylene Nanobiocomposites Reinforced with Kenaf Fiber and Nanoclay
199(16)
Na Sim
Seong Ok Han
7.1 Introduction
199(1)
7.2 Experimental
200(2)
7.2.1 Materials
200(1)
7.2.2 Fabrication of Nanobiocomposites
201(1)
7.2.3 Analysis
201(1)
7.3 Results and Discussion
202(9)
7.3.1 Thermal Properties (TGA)
202(1)
7.3.2 Thermomechanical Properties (TMA)
203(2)
7.3.3 Dynamic Mechanical Analysis (DMA)
205(1)
7.3.4 Tensile Properties
206(1)
7.3.5 Flexural Properties
207(1)
7.3.6 Impact Properties
208(1)
7.3.7 SEM and EDX Observation
209(2)
7.4 Conclusions
211(4)
References
211(4)
8 Cellulose-Based Liquid Crystalline Composite Systems
215(22)
J. P. Borges
J. P. Canejo
S. N. Fernandes
M. H. Godinho
8.1 Introduction
215(1)
8.2 Liquid Crystalline Phases of Cellulose and Its Derivatives
216(16)
8.2.1 All-Cellulosic-Based Biomimetic Composite Systems
219(8)
8.2.2 Liquid Crystalline Electrospun Fibers
227(5)
8.3 Conclusion
232(5)
Acknowledgements
232(1)
References
232(5)
9 Recent Advances in Nanocomposites Based on Biodegradable Polymers and Nanocellulose
237(20)
J. I. Moran
L. N. Luduena
V. A. Alvarez
9.1 Introduction
237(6)
9.1.1 Bioplastics Classification and Current Status
238(1)
9.1.2 Nanocellulose for Bionanocomposites
239(4)
9.2 Cellulose Bionanocomposites Incorporation of Cellulose Nanofibers into Biodegradable Polymers: General Effect on the Properties
243(6)
9.2.1 Bioplastics-Based Nanocellulosic Composites
244(4)
9.2.2 Treatment of CNW: Improvement of Cellulose Nanofibers/Biodegradable Matrix Compatibility
248(1)
9.2.3 Processing of Cellulose-Based Bionanocomposites
248(1)
9.3 Future Perspectives and Concluding Remarks
249(8)
References
250(7)
Part 2 PROCESSING AND APPLICATIONS NANOCELLULOSE-BASED POLYMER NANOCOMPOSITES
10 Cellulose Nano/Microfibers-Reinforced Polymer Composites: Processing Aspects
257(16)
K. Priya Dasan
A. Sonia
10.1 Introduction
257(3)
10.2 The Role of Isolation Methods on Composite Properties
260(2)
10.3 Pretreatment of Fibers and Its Role in Composite Performance
262(2)
10.4 Different Processing Methodologies in Cellulose Nanocomposites and Their Effect on Final Properties
264(4)
10.5 Conclusion
268(5)
References
268(5)
11 Nanocellulose-Based Polymer Nanocomposite: Isolation, Characterization and Applications
273(38)
H. P. S. Abdul Khalil
Y. Davoudpour
N. A. Sri Aprilia
Asniza Mustapha
Md. Nazrul Islam
Rudi Dungani
11.1 Introduction
274(1)
11.2 Cellulose and Nanocellulose
274(2)
11.3 Isolation of Nanocellulose
276(7)
11.3.2 Ultrasonication
278(1)
11.3.3 Electrospinning
279(2)
11.3.4 Acid Hydrolysis
281(2)
11.3.5 Steam Explosion
283(1)
11.4 Characterization of Nanocellulose
283(6)
11.4.1 Physical Properties
283(3)
11.4.3 Thermal Properties
286(2)
11.4.4 Morphological Properties
288(1)
11.5 Drying of Nanocellulose
289(1)
11.6 Modifications of Nanocellulose
290(5)
11.6.1 Acetylation
291(1)
11.6.2 Silylation
291(1)
11.6.3 Application of Coupling Agents
292(1)
11.6.4 Grafting
293(2)
11.7 Nanocellulose-Based Polymer Nanocomposites
295(7)
11.7.1 Thermoplastic Polymer-Nanocellulose Nanocomposites
296(2)
11.7.2 Thermoset Polymer-Nanocellulose Nanocomposites
298(3)
11.7.3 Application of Nanocomposites Based on Nanocellulose
301(1)
11.8 Conclusion
302(9)
Acknowledgement
303(1)
References
303(8)
12 Electrospinning of Cellulose: Process and Applications
311(30)
Raghavan Prasanth
Shubha Nageswaran
Vijay Kumar Thakur
Jou-Hyeon Attn
12.1 Cellulosic Fibers
311(1)
12.2 Crystalline Structure of Electrospun Cellulose
312(1)
12.3 Applications of Cellulose
313(1)
12.4 Electrospinning
313(4)
12.4.1 Processing -- Fundamental Aspects
316(1)
12.5 Electrospinning of Cellulose
317(1)
12.6 Solvents for Electrospinning of Cellulose
318(15)
12.6.1 Room Temperature Ionic Liquids
320(5)
12.6.2 N-methylmorpholine-N-oxide
325(4)
12.6.3 Lithium Chloride/N,N-Dimethylacetamide
329(4)
12.7 Cellulose Composite Fibers
333(3)
12.8 Conclusions
336(5)
Abbreviations
336(1)
Symbols
336(1)
References
337(4)
13 Effect of Kenaf Cellulose Whiskers on Cellulose Acetate Butyrate Nanocomposites Properties
341(14)
Lukmanul Hakim Zaini
M. T. Paridah
M. Jawaid
Alothman Y. Othman
A. H. Juliana
13.1 Introduction
341(1)
13.2 Experimental
342(2)
13.2.1 Materials
342(1)
13.2.2 Whisker Isolation
343(1)
13.2.3 Nanocomposite Preparation
343(1)
13.3 Characterization
344(1)
13.3.1 Fourier Transform Infrared Spectroscopy (FTIR)
344(1)
13.3.2 Thermogravimetric Analysis (TGA)
344(1)
13.3.3 Differential Scanning Calorimetry (DSC)
344(1)
13.3.4 Dynamic Mechanical Properties (DMA)
344(1)
13.4 Result and Discussion
345(7)
13.4.1 Fourier Transform Infrared Spectroscopy (FTIR)
345(1)
13.4.2 Thermogravimetric Analysis
346(1)
13.4.3 Differential Scanning Calorimetry Analysis
347(3)
13.4.4 Dynamic Mechanical Analysis
350(2)
13.5 Conclusions
352(3)
Acknowledgements
353(1)
References
353(2)
14 Processes in Cellulose Derivative Structures
355(38)
Mihaela Dorina Onofrei
Adina Maria Dobos
Silvia loan
14.1 Introduction
355(28)
14.1.1 Liquid Crystalline Polymers
357(2)
14.1.2 Liquid Crystal Dispersed in a Polymer Matrix
359(1)
14.1.3 Techniques for Obtaining Liquid Crystals Dispersed into a Polymeric Matrix
360(1)
14.1.4 Some Methods to Characterize the Liquid Crystal State
360(4)
14.1.5 Liquid Crystal State of Cellulose and Cellulose Derivatives in Solution
364(9)
14.1.6 Cellulose Derivatives/Polymers Systems
373(10)
14.2 Conclusions
383(10)
References
384(9)
15 Cellulose Nanocrystals: Nanostrength for Industrial and Biomedical Applications
393(44)
Anuj Kumar
Yuvraj Singh Negi
15.1 Introduction
393(1)
15.2 Cellulose and Its Sources
394(2)
15.3 Nanocellulose
396(2)
15.4 Cellulose Nanocrystals
398(10)
15.4.1 Extraction of CNCs
399(2)
15.4.2 Overview of CNCs Production by Acid Hydrolysis
401(3)
15.4.3 Characterization Methods
404(1)
15.4.4 Properties and Behavior of CNCs
405(3)
15.5 Aqueous Suspension and Drying of CNCs
408(2)
15.6 Functionalization of CNCs
410(4)
15.6.1 Oxidation
410(1)
15.6.2 Polymer Grafting
411(1)
15.6.3 Cationic Functionalization
412(1)
15.6.4 Acetylation
412(1)
15.6.5 Silylation
413(1)
15.7 Processing of CNCs for Biocomposites
414(2)
15.7.1 Solution Casting
414(1)
15.7.2 Melt Compounding
414(1)
15.7.3 Partial Dissolution
415(1)
15.7.4 Electrospinning
415(1)
15.7.5 Layer-by-Layer Assembly
415(1)
15.8 Applications of CNCs-Reinforced Biocomposites
416(5)
15.8.1 Industrial Applications
416(1)
15.8.2 Photocatalytic Materials
416(1)
15.8.3 Printed Electronics Applications
417(1)
15.8.4 Lithium-Ion Batteries (LIBs)
417(2)
15.8.5 Other Studies
419(2)
15.9 Biomedical Applications
421(6)
15.9.1 Drug Delivery Systems
421(1)
15.9.2 Tissue Engineering
422(3)
15.9.3 Hydrogels
425(1)
15.9.4 Bioimaging
426(1)
15.9.5 pH-Sensing Materials
427(1)
15.10 Conclusion
427(10)
Acknowledgements
428(1)
References
428(9)
16 Medical Applications of Cellulose and Its Derivatives: Present and Future
437(42)
Karthika Ammini Sindhu
Raghavan Prasanth
Vijay Kumar Thakur
16.1 Historical Overview
438(1)
16.2 Use of Cellulose for Treatment of Renal Failure
439(5)
16.2.1 Types of Dialyzers
441(2)
16.2.2 Performance of Hollow-Fiber Dialyzers
443(1)
16.3 Types of Membranes
444(3)
16.3.1 Unmodified Cellulosic Membrane
445(1)
16.3.2 Modified Cellulosic Membrane
445(1)
16.3.3 Synthetic Membranes
446(1)
16.4 Use of Cellulose for Wound Dressing
447(1)
16.5 Cotton as Wound Dressing Material
448(2)
16.6 Biosynthesis, Structure and Properties of MC
450(1)
16.7 MC as a Wound Healing System
451(5)
16.8 Microbial Cellulose/Ag Nanocomposite
456(2)
16.9 Nanocomposites of Microbial Cellulose and Chitosan
458(3)
16.10 Commercialization of Microbial Cellulose
461(1)
16.11 Use of Cellulose as Implant Material
462(8)
16.12 Dental Applications
470(9)
Conclusions
471(1)
Abbreviations
472(1)
Symbols
472(1)
References
473(6)
17 Bacterial Cellulose and Its Multifunctional Composites: Synthesis and Properties
479(28)
V. Thiruvengadam
Satish Vitta
17.1 Introduction
479(6)
17.1.1 Synthesis Mechanism of Bacterial Cellulose
480(2)
17.1.2 Production Methods for Bacterial Cellulose
482(1)
17.1.3 Properties of Bacterial Cellulose
483(2)
17.2 Magnetic Composites
485(4)
17.3 Composites with Catalytic Activity
489(3)
17.4 Electrically Conducting Composites
492(4)
17.4.1 Conducting Polymer-Based Composites
493(2)
17.4.2 Carbon Nanomaterials-Based Composites
495(1)
17.5 Composites as Fuel Cell Components, Electrodes and Membrane
496(3)
17.6 Optically Transparent and Mechanically Flexible Composites
499(3)
17.7 Summary and Outlook
502(5)
References
502(5)
Index 507
Vijay Kumar Thakur (Ph.D.) is a Staff Scientist in the School of Mechanical and Materials Engineeringat Washington State University -U.S.A. He is Editorial Board Member of several International Journals including Advanced Chemistry Letters, Lignocelluloses, Drug Inventions Today (Elsevier), International Journal of Energy Engineering, Journal of Textile Science & Engineering (U.S.A)> to name a few and also member of scientific bodies around the world. His former appointments include Research Scientist in Temasek Laboratories, Nanyang Technological University, SINGAPORE, Visiting Research Fellow in the Department of Chemical and Materials Engineering, LHU-TAIWAN and Post Doctorate in the Department of Materials Science and Engineering, Iowa State University, U.S.A. In his academic career, he has published more than 100 research articles, patent and conference proceedings in the field of polymers and materials science. He has published ten books and twenty-five book chapters on the advanced state-of-the-art of polymers and materials science with numerous publishers. He has extensive expertise in the synthesis of polymers (natural/ synthetic), nano materials, nanocomposites, biocomposites, graft copolymers, high performance capacitors and electrochromic materials.