Muutke küpsiste eelistusi

E-raamat: Nanofluidics: Thermodynamic and Transport Properties

  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-May-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319056210
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-May-2014
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319056210

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed.

This book also:

  • Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observations
  • Presents the theory and experimental results for both thermodynamic and transport properties
  • Examines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficients
  • Combines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensions
  • Conducts an holistic examination of the material from more than 500 archival publications
1 Fundamentals of Nanoparticle Flow and Heat Transfer 1(46)
1.1 Introduction
1(7)
1.1.1 The "Size" of Particles
2(2)
1.1.2 Heterogeneous Mixtures
4(1)
1.1.3 Time Scales, Length Scales, and Dimensionless Groups
5(3)
1.2 Continuum and Molecular Modeling
8(6)
1.2.1 The Continuum Hypothesis
8(3)
1.2.2 Molecular Dynamics
11(3)
1.3 Hydrodynamic Drag on a Nano-Sphere
14(17)
1.3.1 Fundamental Equations in Continuum Theory
14(4)
1.3.2 The Knudsen Number for Particles
18(2)
1.3.3 Slip Parameter and the Cunningham Factor
20(4)
1.3.4 Drag on Irregular and Porous Particles
24(2)
1.3.5 Terminal Velocity of Nanoparticles
26(1)
1.3.6 Transient Flow
27(3)
1.3.7 Lift Forces
30(1)
1.3.8 Other Effects on the Hydrodynamic Force
31(1)
1.4 Heat and Mass Transfer
31(9)
1.4.1 Steady Convection for Spheres in Stokesian Flow
32(1)
1.4.2 Knudsen Number Effects
33(2)
1.4.3 Transient Effects
35(1)
1.4.4 Heat Transfer from Non-spherical Particles
36(2)
1.4.5 Radiation Effects
38(2)
1.4.6 Other Effects on the Heat Transfer
40(1)
References
40(7)
2 Characteristics of Nanofluids 47(44)
2.1 Methods of Preparation and Processing
47(6)
2.1.1 Preparation of Nanoparticles
48(1)
2.1.2 Preparation of Nanofluids
49(2)
2.1.3 Particle Size Statistics
51(2)
2.2 Surface-to-Volume Ratio
53(1)
2.3 Brownian Movement
54(10)
2.3.1 Thermophoresis
58(2)
2.3.2 Thermophoretic Migration and Redistribution of Particles
60(2)
2.3.3 Measurement of the Hydrodynamic Radius: Centrifuging
62(2)
2.4 Electrical Effects, the Double Layer
64(5)
2.4.1 The Zeta Potential
66(1)
2.4.2 Electrophoresis
67(2)
2.5 Aggregation
69(8)
2.5.1 Kinetics of Aggregation
71(2)
2.5.2 Shear-Induced Aggregation
73(2)
2.5.3 Fractal Dimensions of Aggregates
75(2)
2.6 Numerical Modeling
77(11)
2.6.1 Lagrangian Point-Source Modeling
77(2)
2.6.2 One-Way Coupling Simulations for Nanoparticles
79(2)
2.6.3 Lagrangian, Resolved-Particle Model
81(3)
2.6.4 Eulerian Homogeneous Model
84(2)
2.6.5 Eulerian, Two-Fluid Model
86(2)
References
88(3)
3 Thermodynamic Properties 91(26)
3.1 Density and Coefficient of Expansion
92(4)
3.1.1 The Coefficients of Expansion for a Mixture
93(3)
3.2 Extensive and Specific Properties
96(11)
3.2.1 Enthalpy, Internal Energy, and Entropy
96(3)
3.2.2 Specific Heat Capacity of Mixtures
99(2)
3.2.3 Specific Heat Capacity of Nanofluids
101(4)
3.2.4 A Note on the Specific Heat Capacity of the Solid Phase
105(2)
3.3 Effect of Pressure and Temperature on the Thermodynamic Properties of Nanofluids
107(7)
References
114(3)
4 Viscosity 117(46)
4.1 Analytical Models
119(7)
4.1.1 The Viscosity of Homogeneous Fluids
119(3)
4.1.2 The Effective Viscosity of Solid-Liquid Suspensions
122(2)
4.1.3 Intrinsic Viscosity
124(1)
4.1.4 Viscosity of Suspensions of Spheroidal Particles
125(1)
4.2 Experimental Results: Newtonian Suspensions
126(16)
4.2.1 Types of Viscometers for Newtonian Fluids
128(2)
4.2.2 Measurements with Heterogeneous, Newtonian Suspensions
130(3)
4.2.3 Experimental Studies and Correlations for Nanofluids
133(6)
4.2.4 General Issues and Recommendations on the Correlations
139(3)
4.3 Rheology of Solid-Liquid Suspensions
142(10)
4.3.1 Rheological Characteristics of Materials
142(2)
4.3.2 Rheology of Nanofluids
144(3)
4.3.3 Viscosity of CNT Nanofluids
147(1)
4.3.4 General Observations for Non-Newtonian Nanofluids
148(2)
4.3.5 Drag and Heat Transfer of Spheres in Non-Newtonian Fluids
150(2)
4.4 Friction Factors
152(6)
4.4.1 Friction Factor with Slip at the Wall
152(3)
4.4.2 Experimental Results for the Friction Factor
155(2)
4.4.3 Concluding Remarks
157(1)
References
158(5)
5 Thermal Conductivity 163(64)
5.1 Analytical Models
165(13)
5.1.1 Thermal Conductivity of Fluids
165(3)
5.1.2 Thermal Conductivity of Solids
168(2)
5.1.3 Thermal Conductivity of Suspensions
170(8)
5.2 Methods of Conductivity Measurement
178(5)
5.2.1 Transient Hot Wire
178(3)
5.2.2 Transient Plate Source
181(1)
5.2.3 The 3ω Method
181(1)
5.2.4 Steady Conduction Between Plates or Cylinders
182(1)
5.2.5 Laser Heating
183(1)
5.3 Experimental Data
183(14)
5.3.1 Thermal Conductivity of Heterogeneous Suspensions
83(104)
5.3.2 Experimental Data with CNT
187(2)
5.3.3 Experimental Data with Metals
189(1)
5.3.4 Experimental Data with Metal Oxides
190(3)
5.3.5 A Benchmark Study on Thermal Conductivity
193(2)
5.3.6 Temperature Dependence
195(2)
5.4 Mechanisms of Thermal Conductivity Enhancement in Nanofluids
197(18)
5.4.1 Particle Conductivity
197(1)
5.4.2 Formation of an Interfacial Solid Layer
198(2)
5.4.3 Electric Surface Charge
200(1)
5.4.4 Brownian Movement
201(4)
5.4.5 Transient Contributions
205(2)
5.4.6 Particle Shape, Distribution, Size, and Formation of Aggregates
207(2)
5.4.7 Preparation and Surfactants
209(4)
5.4.8 Thermal Waves and Phonons
213(1)
5.4.9 Other Mechanisms
214(1)
5.5 Experimental Correlations
215(3)
5.5.1 A Note on the Correlations for Thermal Conductivity
217(1)
References
218(9)
6 Convection and Boiling 227(52)
6.1 Governing Equations
228(9)
6.1.1 General Expressions
228(1)
6.1.2 The Boundary Layer Approximation
229(2)
6.1.3 Flow in Channels: Developed Flow
231(2)
6.1.4 Laminar Velocity and Temperature Profiles
233(1)
6.1.5 Two Analytical Solutions for the Temperature Profile
234(2)
6.1.6 Nusselt Numbers for Channels and Tubes
236(1)
6.2 Convection with Particulate Suspensions
237(6)
6.2.1 A Model for the Convection in Fluid-Solid Suspensions
239(4)
6.3 Convection with Nanofluids
243(13)
6.3.1 Laminar Flow Experiments
243(4)
6.3.2 Laminar Flow Numerical and Analytical Results
247(1)
6.3.3 Turbulent Convection
248(2)
6.3.4 Turbulence Modulation
250(1)
6.3.5 Convection vs. Friction: Figures of Merit
251(3)
6.3.6 Optimization of a Cooling Channel Under Constant Heat Flux
254(2)
6.4 Natural Convection
256(4)
6.4.1 Natural Convection Coefficients with Nanoparticles
256(2)
6.4.2 Earlier Onset of Natural Convection: Effect on Conductivity Measurements
258(2)
6.5 Boiling and Critical Heat Flux
260(12)
6.5.1 Pool Boiling and Critical Heat Flux
261(3)
6.5.2 Pool Boiling with Nanofluids
264(2)
6.5.3 Forced/Convective Boiling with Nanofluids
266(5)
6.5.4 Radiation Effects
271(1)
References
272(7)
7 Diffusivity 279(34)
7.1 Analytical Models
282(5)
7.1.1 Molecular Theory
282(1)
7.1.2 Continuum Theory: Similarity with Heat Transfer
283(3)
7.1.3 Diffusivity of Suspensions
286(1)
7.2 Methods of Diffusivity Measurement
287(10)
7.2.1 Rotating Disk Diffusion Meter
288(1)
7.2.2 Permeation Cell with Membrane
289(2)
7.2.3 Optical Methods
291(1)
7.2.4 Nuclear Magnetic Resonance
292(1)
7.2.5 Liquid Reactors
292(1)
7.2.6 Diffusion in Narrow Tubes or Membrane Pores with Nanofluids
293(4)
7.3 Experimental Results
297(5)
7.3.1 A Note on the Convective Mass Transfer Coefficients
297(1)
7.3.2 Experimental Studies and Results
298(3)
7.3.3 Conclusions on the Transport of Mass
301(1)
7.4 Non-equilibrium Thermodynamics of Transport Processes
302(8)
7.4.1 Conjugate Fluxes and Conjugate Forces
303(2)
7.4.2 Reciprocal Relations
305(1)
7.4.3 Conduction in an Anisotropic Medium
306(2)
7.4.4 Combined Diffusion and Conduction Processes
308(2)
References
310(3)
8 Epilogue 313(20)
8.1 Cost of Nanofluids and Investment Climate
314(4)
8.1.1 Cost of Nanoparticles and Nanofluids
314(2)
8.1.2 Nanotechnology Investments Between 2000 and 2014
316(2)
8.2 Realistic Applications of Nanofluids
318(6)
8.2.1 Cooling of Electronic Components
319(1)
8.2.2 Nuclear Reactor Cooling
320(1)
8.2.3 Engine Coolants for Vehicles
321(1)
8.2.4 Waste Energy Utilization, Solar Energy, and HVAC
322(1)
8.2.5 Cooling of Electricity Transformers and Other Power Elements
323(1)
8.2.6 Mass Transfer Applications
323(1)
8.3 Technological Challenges
324(3)
8.3.1 Stability, Particle Sedimentation/Removal, System Reliability
324(1)
8.3.2 Environmental and Health Concerns
325(2)
8.4 Observations and Recommendations
327(4)
References
331(2)
Index 333