Muutke küpsiste eelistusi

E-raamat: Nanogrids and Picogrids and their Integration with Electric Vehicles

(Ghani Khan Choudhury Institute of Engineering and Technology, Department of Electrical Engineering, India)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 30-May-2022
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839534836
  • Formaat - EPUB+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 30-May-2022
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781839534836

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This practical reference covers the key concepts and technologies of nano- and picogrids in conjunction with connected generation, EV charging, IoT and cloud computing, and power quality and protection issues. Case studies help provide a full understanding of the concepts explored.



Nanogrids are small energy grids, powered by various generators often including photovoltaics. For example, a nanogrid might supply a village in a rural area and allow that village to trade its surplus energy. A picogrid is a still smaller energy grid. IRENA defines nanogrids as systems handling up to 5 kW of power while picogrids handle up to 1 kW.

Nanogrids and picogrids can play roles in urban, suburban and rural areas, particularly in developing countries, and can help with decarbonising the energy systems and empowering citizens. Electric vehicles (EV) are poised to play important roles and need to be accounted for in emerging and future small grids.

This book introduces the principles of nano- and picogrids, then goes on to provide a technical analysis covering connected resources, modelling and performance, power quality and protection. The use of nano- and picogrids in conjunction with EV, charger technologies, the IoT, cloud computing and data sharing is explored. Case studies of real-life projects help readers to understand and apply the concepts for their own projects.

Nanogrids and Picogrids and their Integration with Electric Vehicles is a valuable resource for researchers involved with power systems, particularly those with an interest in power supply in rural areas, or anyone with a particular interest in nano- and microgrids. It is also of use to advanced students, and to engineers working in utilities.

Preface xxiii
Acknowledgment xxv
Author's Biography xxvii
1 Introduction
1(6)
1.1 World environment
1(1)
1.2 Paradigm shift in the energy market
1(1)
1.3 Paradigm shift in grids topology
2(1)
1.4 Paradigm shift in mobility
3(1)
1.5 Advancement in computation and communication techniques
4(1)
1.6 Nanogrids and picogrids and their integration with EVs
4(1)
1.7 Focus of the book
4(3)
References
5(2)
2 Energy resources for nanogrids and picogrids
7(26)
2.1 Introduction
7(1)
2.2 Energy resources for steam power plant
8(1)
2.2.1 Coal
8(1)
2.2.2 Oil
9(1)
2.2.3 Gas
9(1)
2.3 Energy resources for nuclear power plant
9(1)
2.4 Energy resources for diesel-electric power plant
10(1)
2.5 Energy resources for gas turbine power plant
10(1)
2.6 Energy resources for hydro-electric power plant
10(1)
2.7 Energy resources for MHD power plant
11(1)
2.8 Energy resources for thermoelectric power plant
11(1)
2.9 Energy resources for thermionic power plant
12(1)
2.10 Energy resources for wind power plant
12(1)
2.11 Energy resources for tidal power plant
12(1)
2.12 Energy resources for geothermal power plant
12(1)
2.13 Energy resources for solar thermal power plant
13(2)
2.13.1 Advantages and limitations
13(1)
2.13.2 Working topology of solar thermal electric power plant
13(1)
2.13.3 Different types of collectors of solar thermal energy
14(1)
2.13.4 Flat collector
14(1)
2.13.5 Parabolic cylindrical collector
15(1)
2.13.6 Paraboloid mirrors
15(1)
2.14 Energy resources for solar PV power plant
15(11)
2.14.1 PV cell
15(2)
2.14.2 Characteristics
17(5)
2.14.3 Module, panel, string, arrays
22(1)
2.14.4 Cell mismatching V
23(2)
2.14.5 Advantages and disadvantages
25(1)
2.14.6 Classification of PV cell
25(1)
2.14.7 Specification properties of PV cell
26(1)
2.14.8 Classification of solar PV-based resource system
26(1)
2.15 Biomass
26(1)
2.16 Fuel cell
27(1)
2.16.1 Major advantages of fuel cells
27(1)
2.16.2 Major disadvantages of fuel cells
28(1)
2.16.3 Cell bank
28(1)
2.16.4 Fuels used in fuel cells
28(1)
2.16.5 Electrodes
28(1)
2.17 Energy storage systems
28(2)
2.17.1 Mechanical process for energy storing
29(1)
2.17.2 Chemical process for energy storing
29(1)
2.17.3 Thermal process for energy storing
29(1)
2.17.4 Electrostatic process for energy storing
29(1)
2.17.5 Electromagnetic process for energy storing
29(1)
2.17.6 Difference between fuel cell and battery
30(1)
2.18 Summary
30(3)
Further Reading
30(3)
3 Modeling of nanogrids and picogrids
33(72)
3.1 Introduction
33(1)
3.2 Nanogrid
33(1)
3.3 PGs
34(1)
3.4 Comparison among NG, PG, and MG
35(1)
3.5 Main parts for NG and PG model
36(1)
3.6 Resources
37(1)
3.7 Power electronics components
37(6)
3.7.1 Power diode
38(1)
3.7.2 Schottky diode
38(1)
3.7.3 Silicon-controlled rectifier
38(1)
3.7.4 Gate turn off thyristor (GTO)
39(1)
3.7.5 Fast switching thyristor (FST)
39(1)
3.7.6 Reverse conducting thyristor (RCT)
39(1)
3.7.7 Static induction thyristor
40(1)
3.7.8 Light-activated silicon-controlled rectifier (LASCRs)
40(1)
3.7.9 FET-controlled thyristor
40(1)
3.7.10 Triac
40(1)
3.7.11 Bipolar junction transistor (BJT)
40(1)
3.7.12 Insulated gate bipolar transistor (IGBT)
41(1)
3.7.13 MOSFET
42(1)
3.8 Converter
43(15)
3.8.1 Inverter
43(11)
3.8.2 Rectifier
54(2)
3.8.3 Transformer
56(1)
3.8.4 Chopper
57(1)
3.8.5 Resonant converters
58(1)
3.8.6 Switched-mode power supply (SMPS)
58(1)
3.9 Load
58(1)
3.10 Gateway
59(1)
3.11 Control and load management (CLM) unit
59(1)
3.11.1 Commutation
59(1)
3.11.2 Control of time and current
60(1)
3.11.3 Control of other power parameters
60(1)
3.12 Distribution network
60(1)
3.13 Metering and supervision unit (MSU)
60(1)
3.14 Protection unit
60(1)
3.15 Smart NG and PG and their essential additional components
61(1)
3.16 AC grid
61(1)
3.17 DC grid
62(1)
3.18 Composite AC-DC grid
62(1)
3.19 Comparison between DC and AC NGs
63(1)
3.20 Grid topology
64(9)
3.20.1 General considerations
64(1)
3.20.2 HV and extra-high voltage (EHV) grid topology
64(1)
3.20.3 Medium-voltage (MV) grid topology
64(2)
3.20.4 LV grid topology
66(1)
3.20.5 HVDC grid topology
66(1)
3.20.6 Hybrid grid topology
67(1)
3.20.7 Smart grid topology
67(1)
3.20.8 Topology for NG and PG
68(5)
3.21 Smart metering, measurement, and monitoring unit
73(3)
3.22 Power flow in AC multi-bus mesh and ring system
76(24)
3.22.1 Load flow
76(1)
3.22.2 Power and admittance matrix
76(1)
3.22.3 Classification of buses
77(1)
3.22.4 Application of Kirchhoff's current law (KCL)
77(1)
3.22.5 Methods of load flow solutions
78(1)
3.22.6 Admittance matrix of a transmission line
79(1)
3.22.7 Admittance matrix of three bus network (all buses are connected to load)
80(1)
3.22.8 Admittance matrix of three bus network (all bus is connected to its load)
81(1)
3.22.9 Admittance matrix of four bus network
82(1)
3.22.10 Admittance matrix of four bus networks (all buses are connected to load)
83(2)
3.22.11 Generalized structure of admittance matrix
85(1)
3.22.12 Parameters and variables in load flow analysis
85(1)
3.22.13 Two-port network analysis and load flow analysis-
85(1)
3.22.14 Gauss's iterative method without considering voltage-controlled bus
86(2)
3.22.15 Explanation of Gauss-Seidel method in three bus system
88(1)
3.22.16 Explanation of Gauss-Seidel method in four bus system
89(1)
3.22.17 Gauss's iterative method considering generator bus (P, Vbus)
90(4)
3.22.18 Advantage of Gauss-Seidel method over Gauss method
94(1)
3.22.19 Limitation of Gauss-Seidel method
94(1)
3.22.20 Acceleration factor
94(1)
3.22.21 Advantage of Gauss-Seidel method
94(1)
3.22.22 Newton-Raphson method
94(4)
3.22.23 Newton-Raphson method in the load flow solution
98(2)
3.22.24 Fast decoupled method
100(1)
3.22.25 Sparse matrix
100(1)
3.23 Load flow in DC network
100(2)
3.24 Summary
102(3)
References
102(1)
Further Reading
102(3)
4 Operation and performance analysis
105(42)
4.1 Introduction
105(1)
4.2 Operation
105(1)
4.2.1 Open-loop operation
105(1)
4.2.2 Closed-loop operation
106(1)
4.3 Classification of NPG control
106(1)
4.3.1 Supply-side management (SSM)
107(1)
4.3.2 Demand-side management (DSM)
107(1)
4.4 MPPT in PV control system for NPG
107(3)
4.4.1 Difficulties of using solar PV generation efficiently
107(1)
4.4.2 Importance of MPPT
108(1)
4.4.3 Components of MPPT-based control system
108(1)
4.4.4 Maximum power point tracker
109(1)
4.4.5 Controller for PWM-based pulse generation
109(1)
4.4.6 PWM pulse generator or power driver
109(1)
4.5 MPPT solar charge controller
110(4)
4.5.1 MPPT controller
110(1)
4.5.2 Main features of MPPT controller
110(1)
4.5.3 MPPT with other controllers
111(1)
4.5.4 Incremental conductance-based MPPT controller
111(2)
4.5.5 Proportional-integration (PI) controller and proportional-integration-differentiation (PID) controller
113(1)
4.5.6 Fuzzy-based controller (FC) and genetic algorithm-based controller (GAC)
113(1)
4.5.7 Voltage droop controller (VDC)
114(1)
4.6 Droop control
114(10)
4.6.1 Voltage droop
114(3)
4.6.2 Droop control in AC network
117(5)
4.6.3 Traditional droop control in AC network
122(1)
4.6.4 Droop control in DC network
123(1)
4.6.5 Main features of droop control
124(1)
4.7 Virtual synchronous machine (VSM)-based control
124(1)
4.8 Selection of boost or buck converter
125(1)
4.9 Optimization for pulse width modulation (PWM)
125(1)
4.10 Grid power flow direction control
125(3)
4.10.1 Power flow direction and control
125(2)
4.10.2 Factors of grid power flow control
127(1)
4.10.3 Common practice
127(1)
4.10.4 Control equipment
127(1)
4.11 Clarke and Park transformations in NPG power flow control
128(3)
4.12 Solar-wind NPG model
131(1)
4.13 Case studies
132(13)
4.13.1 Case study with a 20 kW nanogrid system
132(1)
4.13.2 Case study with solar-PV fed DC-AC single-stage power converter connected with the utility grid
133(3)
4.13.3 Case study with step up flyback converter
136(3)
4.13.4 Case study with DC-DC buck-boost IGBT/diode converter
139(1)
4.13.5 Case study with DC-AC 2 and 4-pulse single-phase PWM inverter
139(6)
4.14 Summary
145(2)
Further Reading
145(2)
5 Power quality issues in nanogrid and picogrid systems
147(32)
5.1 Introduction
147(1)
5.2 Hexagonal approach for ensuring EPQ in NPG
148(2)
5.3 Major sources of EPQ disturbances in NPG systems
150(1)
5.4 Classification of major type PQ disturbances
150(1)
5.5 Harmonics
151(11)
5.5.1 Fundamental wave
151(1)
5.5.2 Harmonic components
152(1)
5.5.3 Classification of harmonic components
152(1)
5.5.4 Non-sinusoidal waveform
153(1)
5.5.5 The lowest order of harmonic
154(1)
5.5.6 Useful harmonics parameters
154(1)
5.5.7 Harmonics-related PQ indices
154(2)
5.5.8 Sources of harmonics
156(1)
5.5.9 Transformers
157(1)
5.5.10 Rotating machine
158(1)
5.5.11 Arcing devices
158(1)
5.5.12 Converters and controllers
158(1)
5.5.13 Effects of harmonics
159(1)
5.5.14 Harmonics reductions
159(3)
5.6 Transients
162(1)
5.6.1 Classifications of transients
162(1)
5.6.2 Sources of transients
163(1)
5.6.3 Effects
163(1)
5.7 Sag
163(1)
5.8 Swell
163(1)
5.9 Interruption
164(1)
5.10 Sustained interruption
165(1)
5.11 Under-voltage
165(1)
5.12 Overvoltage
166(1)
5.13 DC offset
166(1)
5.14 Electric noise
166(1)
5.15 Voltage fluctuation
167(1)
5.16 Flicker
167(1)
5.17 Power frequency variations
168(1)
5.18 Useful tools for signal assessment
168(6)
5.18.1 Fourier series
168(3)
5.18.2 Discrete Fourier transform (DFT)
171(1)
5.18.3 Fast Fourier transform (FFT)
171(1)
5.18.4 Hartley transform and discrete Hartley transform (DHT)
171(1)
5.18.5 Wavelet transform (WT)
172(1)
5.18.6 Principal component analysis (PCA)
173(1)
5.18.7 K-means, Silhouette index, and precision
174(1)
5.18.8 Machine learning and artificial intelligence
174(1)
5.19 Standards and guidelines
174(2)
5.20 Summary
176(3)
References
176(1)
Further Reading
177(2)
6 Faults and protection in nanogrids and picogrids
179(22)
6.1 Introduction
179(1)
6.2 Fault zones
179(1)
6.3 Faults in photovoltaic resources
180(5)
6.3.1 Common faults
180(1)
6.3.2 Partial shading
180(1)
6.3.3 Irradiance
180(1)
6.3.4 String fault
180(4)
6.3.5 Hot spot or temperature rise
184(1)
6.4 Faults in the battery storage unit
185(1)
6.5 Faults in power electronics converters and controllers
186(1)
6.6 Faults in basic protective elements
187(2)
6.6.1 Common fault
187(1)
6.6.2 Failure in the grounding system
187(1)
6.6.3 Failure in the current limiting reactors
187(1)
6.6.4 Snubber fault
188(1)
6.7 Faults in link bus and load bus
189(4)
6.7.1 Classification
189(1)
6.7.2 Detection from station
189(1)
6.7.3 Detection from the remote end
189(1)
6.7.4 Case study on load bus fault detection in nanogrid system from the remote end
189(2)
6.7.5 Case study on grid bus and load bus fault in a solar-wind hybrid system
191(2)
6.8 Faults in feeders and other connecting lines
193(1)
6.9 Faults in transformer
193(2)
6.9.1 Classification of faults
193(1)
6.9.2 Choice of protection scheme
194(1)
6.10 Faults in the battery unit
195(1)
6.11 Grounding practice
195(1)
6.12 Lightning protection
196(1)
6.12.1 Lightning
196(1)
6.12.2 Features
196(1)
6.12.3 Damages in NPG system due to lightning
197(1)
6.12.4 Protection against lightning
197(1)
6.13 Common protection schemes practiced in NPG
197(1)
6.14 Safety measures and routine tests practiced in NPG
198(1)
6.15 Summary
198(3)
Further Reading
198(3)
7 Utilization of nanogrids and picogrids
201(32)
7.1 Introduction
201(1)
7.2 Classification of NPG utilization
202(1)
7.3 NPG tariff schemes
203(1)
7.4 Picogrids utilization
204(2)
7.4.1 Picogrid in street lighting
204(1)
7.4.2 Picogrids in small domestic applications
205(1)
7.4.3 Picogrid for small motor loads
205(1)
7.4.4 Picogrid for rural domestic application
205(1)
7.4.5 Picogrid for rural primary schools or libraries
205(1)
7.4.6 Picogrids in agricultural applications
205(1)
7.4.7 Picogrids in small rural markets
205(1)
7.4.8 Picogrids for small religious temples or community halls
206(1)
7.4.9 Picogrids fed mobile charging station
206(1)
7.5 Domestic utilization of NPG
206(1)
7.6 Efficiency in NPG utilization
207(1)
7.6.1 Efficiency
207(1)
7.6.2 Number of grid conversions and grid efficiency
207(1)
7.7 Utilization for EV s-
207(1)
7.8 Portable or mobile picogrid utilization
208(1)
7.9 Some examples
208(5)
7.9.1 Example of NPG fed indoor mini agricultural pump
208(1)
7.9.2 Example of an outdoor 12 kW nanogrid for deep tubewell pumping system for agricultural needs
209(1)
7.9.3 Example of NPG fed mini fisheries
209(1)
7.9.4 Example of NPG fed agricultural farmhouse
210(1)
7.9.5 Example of NPG-fed shop
211(1)
7.9.6 Example of NPG-fed petrol pump
211(1)
7.9.7 Example of NPG-fed street lighting
212(1)
7.9.8 Mobile or portable picogrid in fishing boats for fisherman
212(1)
7.9.9 Picogrid in robotics applications
212(1)
7.10 Case studies
213(12)
7.10.1 Case study with DC load and AC load in domestic application
213(1)
7.10.2 Case study on loss and ampere-hour requirement in-home application
214(3)
7.10.3 Case study centralized NPG
217(1)
7.10.4 Case study with LED-driven lighting system
217(1)
7.10.5 Case study on the aging effect
218(1)
7.10.6 Case study on 6000 W nanogrid system
219(6)
7.11 Design features of solar-wind hybrid picogrid-based pole-mounted lighting system
225(2)
7.12 Some specifications useful for modeling, design, and selection of NPG-based applications
227(1)
7.13 Summary
227(6)
Further Reading
229(4)
8 Electromobility
233(16)
8.1 Introduction
233(1)
8.2 Need for E-mobility
233(1)
8.3 General benefits of E-mobility
234(1)
8.4 The main requirement for the growth of E-mobility
234(1)
8.5 Infrastructure development
234(1)
8.6 Classification of E-vehicles
234(1)
8.7 Main components of EVs
235(2)
8.8 Benefits of electric motors of E-vehicles over internal combustion engine
237(1)
8.9 EV charging
237(3)
8.9.1 Charging time
238(1)
8.9.2 Different factors influencing charging time
238(1)
8.9.3 Classification based on EV charging
238(1)
8.9.4 Range of fully charged battery
238(1)
8.9.5 EV battery swapping
239(1)
8.9.6 Lifetime of EV batteries and replacement
239(1)
8.9.7 EV charging stations
239(1)
8.9.8 Specification parameters of charging stations
239(1)
8.9.9 EV supply equipment (EVSE)
239(1)
8.10 EV safety
240(1)
8.11 EV speed, efficiency, and price
240(1)
8.11.1 Speed
240(1)
8.11.2 Efficiency
240(1)
8.11.3 Price
240(1)
8.12 EV charging tariff
240(2)
8.13 Present scenario
242(1)
8.14 Smart city application
243(1)
8.15 Rural utility
243(1)
8.16 Unmanned aerial vehicle (UAV)
244(1)
8.17 Surveillance
244(1)
8.18 Challenges
245(1)
8.19 Summary
245(4)
Further Reading
245(4)
9 Nanogrid and picogrid integration with electric mobility
249(28)
9.1 Introduction
249(1)
9.2 Need for integration of EV with NPG
249(1)
9.3 Generalized model of EV-NPG integration
250(2)
9.3.1 Planning of grid-connected charging stations
250(2)
9.4 Optimization
252(1)
9.4.1 Operation, utilization, and business optimization
252(1)
9.4.2 Charging optimization
253(1)
9.4.3 Fleet management optimization
253(1)
9.4.4 Energy consumption optimization
253(1)
9.5 Issues in EV integration with grids
253(4)
9.5.1 Resource availability
255(1)
9.5.2 Grid type
255(1)
9.5.3 Public charging station
255(1)
9.5.4 Private charging stations
255(1)
9.5.5 Smart cities/communities
256(1)
9.5.6 Vehicle density
256(1)
9.5.7 Charging at parking, depot, and garages
256(1)
9.5.8 Corporate parking
256(1)
9.5.9 VIP parking
256(1)
9.5.10 Car sharing/fleet
257(1)
9.5.11 Battery swapping
257(1)
9.5.12 Existing fuel (gas/oil) pumps
257(1)
9.6 Design of EV charging stations
257(14)
9.6.1 Charging mode
257(1)
9.6.2 Voltage levels
258(1)
9.6.3 Connector shape
258(1)
9.6.4 Continuous availability of power at charging station
258(1)
9.6.5 Smart metering
259(1)
9.6.6 Payment
260(1)
9.6.7 Interactive information sharing and booking facility in the vehicle network
260(1)
9.6.8 Vehicle load sharing and traffic management
261(1)
9.6.9 Main EV charging components
261(1)
9.6.10 Charging inlet
261(1)
9.6.11 EV connector for charging inlet
262(1)
9.6.12 Different modes of charging connections for EV charging
262(1)
9.6.13 EV charging classification based on charging time
262(3)
9.6.14 Main advantages and limitations of fast charging
265(1)
9.6.15 Mode selection
265(1)
9.6.16 Environmental aspects: altitude and temperature
265(1)
9.6.17 Number of charging output
265(2)
9.6.18 Authentication
267(1)
9.6.19 Communication system in charging station
267(1)
9.6.20 Type of charging point installation
268(1)
9.6.21 Fixed cable for charging
268(1)
9.6.22 Maximum charging current, number of charging points, and mode
268(1)
9.6.23 Earthing in EV charging
269(1)
9.6.24 Electric shocks and their protection in the EV charging system
269(1)
9.6.25 Surge or transients overvoltage protection
269(1)
9.6.26 EV charging and load management
270(1)
9.6.27 Charging station at dealer premises
271(1)
9.7 Smart supervision and challenges
271(1)
9.7.1 Smart supervision and smart charging
271(1)
9.7.2 Challenges
272(1)
9.8 Case study on the V2X configuration
272(1)
9.9 Some useful standards
273(1)
9.10 Summary
274(3)
Further Reading
275(2)
10 Nanogrid-integrated EV charging with IoT-enabled cloud computing for smart time and space management
277(48)
10.1 Introduction
277(2)
10.2 Internet of Things (IoT)
279(12)
10.2.1 Definition
279(1)
10.2.2 History of IoT
279(1)
10.2.3 IoT protocol layers and topology
280(1)
10.2.4 Sensing layer
280(1)
10.2.5 Networking layer
281(1)
10.2.6 Data processing layer
281(1)
10.2.7 Application and interfacing layer
282(1)
10.2.8 Key hardware components of IoT
282(1)
10.2.9 IoT--sensors
282(1)
10.2.10 Networking protocols for IoT
283(1)
10.2.11 IoT application software
284(1)
10.2.12 IoT--key features and advantages
285(1)
10.2.13 IoT--advantages
285(1)
10.2.14 Major challenges with IoT
286(1)
10.2.15 Cyber-attacks
286(1)
10.2.16 Data theft
287(1)
10.2.17 Other challenges
287(1)
10.2.18 Industrial IoT (IIoT)
287(1)
10.2.19 Cellular topology for IoT
287(1)
10.2.20 Wearable electronics
287(1)
10.2.21 Difference between machine to machine (M2M) network and IoT
288(1)
10.2.22 Factors to be considered in applying IoT-based solution
288(1)
10.2.23 IoT in energy management
288(1)
10.2.24 IoT in mobility
289(1)
10.2.25 Best IoT practices
290(1)
10.2.26 Testing of IoT devices
290(1)
10.3 Artificial Intelligence (AI)
291(1)
10.3.1 Definition
291(1)
10.3.2 Limitation
291(1)
10.3.3 Classification
291(1)
10.4 Artificial neural network (ANN)
292(3)
10.4.1 Definition
292(1)
10.4.2 Classification of ANN topologies
293(1)
10.4.3 Working topology of ANNs
294(1)
10.4.4 Propagation function
295(1)
10.4.5 Machine-learning ANNs
295(1)
10.5 Cloud computing
295(3)
10.5.1 Definition
295(1)
10.5.2 Main advantages and limitations of cloud computing
296(1)
10.5.3 Major limitations of cloud computing are as follows
296(1)
10.5.4 Classification of cloud computing
296(1)
10.5.5 Public, private, hybrid, and community clouds
296(1)
10.5.6 IaaS, PaaS, and SaaS
297(1)
10.5.7 Technologies for cloud computing
298(1)
10.6 Fog Computing
298(1)
10.7 Model for NG and internet of EV-things integration
299(10)
10.7.1 Cluster of NGs
299(1)
10.7.2 NG-integrated EV charging
299(1)
10.7.3 IoT-enabled information sharing and selection of charging station
300(1)
10.7.4 NG-fed EVCS and SBCS
301(2)
10.7.5 Modified IoT-enabled information sharing and selection of EVCS and SBCS
303(3)
10.7.6 Case study
306(3)
10.8 Research trend
309(2)
10.9 Useful information
311(1)
10.10 Summary
311(14)
References
319(2)
Further Reading
321(4)
Index 325
Surajit Chattopadhyay (Ph.D., CEng(UK), FIE(I), MIET) is an associate professor in the Department of Electrical Engineering at Ghani Khan Choudhury Institute of Engineering and Technology, India. His field of interest includes smart grid topology, electric mobility, overhead electric power lines, electric power quality, fault diagnosis, signal analysis, robotics, sensors, and IoT application. He has authored/co-authored one patent, four books and around 140 papers published in International and National Journals and conferences and edited one book. He is a member of the IET Communities Committee, South Asia, a member of Solar Energy and Future of Mobility and Transport (FoMT) working groups, and an executive committee member of the IET Kolkata Network, and former hon. secretary (2013-2016) and YP-chair (2012-2013), IET Kolkata Network. He served as lead Guest Editor for IET Nanodielectrics and IET Smart Grid. He received many awards and best papers' recognition. He was recognized as an outstanding reviewer of IEEE Transactions on Instrumentation and Measurements in 2020. He received Railway Board's Prize (India) in 2021.