Prologue |
|
xxi | |
Preface |
|
xxv | |
Acknowledgments |
|
xxix | |
About the Authors |
|
xxxiii | |
Contributors |
|
xxxvii | |
|
Section 1 Contact Mechanics |
|
|
|
1 Contact Issues in Brittle Solids |
|
|
3 | (10) |
|
|
|
|
|
|
|
3 | (1) |
|
1.2 Elasticity and Plasticity |
|
|
3 | (2) |
|
|
5 | (5) |
|
|
10 | (3) |
|
|
10 | (3) |
|
2 Mechanics of Elastic and Elastoplastic Contacts |
|
|
13 | (10) |
|
|
|
|
|
13 | (1) |
|
|
14 | (4) |
|
2.2.1 The Elastic Indentation Model |
|
|
14 | (2) |
|
2.2.2 The Rigid Perfectly Plastic Model |
|
|
16 | (1) |
|
2.2.3 The Spherical-Cavity Expansion Model |
|
|
16 | (2) |
|
2.2.4 The Elastic and Perfectly Plastic Model |
|
|
18 | (1) |
|
|
18 | (5) |
|
|
19 | (4) |
|
Section 2 Journey towards Nanoindentation |
|
|
|
3 Brief History of Indentation |
|
|
23 | (8) |
|
|
|
|
|
23 | (1) |
|
3.2 How Did It All Happen? |
|
|
23 | (1) |
|
|
23 | (1) |
|
3.4 Modern Developments: Nineteenth-Century Scenario |
|
|
24 | (1) |
|
3.5 Comparison of Techniques |
|
|
25 | (1) |
|
3.6 Major Developments beyond 1910 |
|
|
25 | (1) |
|
3.7 Beyond the Vickers and Knoop Indenters |
|
|
26 | (1) |
|
|
27 | (4) |
|
|
27 | (4) |
|
4 Hardness and Elastic Modulus |
|
|
31 | (8) |
|
|
|
|
|
31 | (1) |
|
|
31 | (2) |
|
4.3 Beyond the Hertzian Era: Modern Contact Mechanics |
|
|
33 | (1) |
|
4.4 The Experimental Issues |
|
|
33 | (1) |
|
|
33 | (1) |
|
4.6 Techniques to Determine Elastic Modulus |
|
|
34 | (2) |
|
|
36 | (3) |
|
|
37 | (2) |
|
5 Nanoindentation: Why at All and Where? |
|
|
39 | (6) |
|
|
|
|
|
|
|
|
|
39 | (3) |
|
|
39 | (1) |
|
5.1.2 Location-Control Mode |
|
|
39 | (2) |
|
|
41 | (1) |
|
5.2 In Situ Nanoindentation |
|
|
42 | (1) |
|
|
43 | (2) |
|
|
43 | (2) |
|
6 Nanoindentation Data Analysis Methods |
|
|
45 | (8) |
|
|
|
|
|
45 | (2) |
|
6.2 Modeling of the Nanoindentation Process |
|
|
47 | (4) |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
49 | (2) |
|
|
51 | (2) |
|
|
52 | (1) |
|
7 Nanoindentation Techniques |
|
|
53 | (4) |
|
|
|
|
|
53 | (2) |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
55 | (2) |
|
|
57 | (6) |
|
|
|
|
|
57 | (1) |
|
8.2 Nanoindenters: Tip Details and Tip Geometries |
|
|
57 | (5) |
|
|
62 | (1) |
|
|
62 | (1) |
|
9 Materials and Measurement Issues |
|
|
63 | (16) |
|
|
|
|
|
|
|
|
|
63 | (1) |
|
|
63 | (5) |
|
9.3 Nanoindentation Studies |
|
|
68 | (4) |
|
9.3.1 Fischerscope H100-XYp |
|
|
69 | (1) |
|
9.3.2 Triboindenter UBI 700 |
|
|
70 | (1) |
|
|
71 | (1) |
|
9.3.4 The Typical Protocol |
|
|
71 | (1) |
|
|
72 | (1) |
|
9.5 Microstructural Characterizations |
|
|
72 | (1) |
|
|
73 | (6) |
|
|
73 | (6) |
|
Section 3 Static Contact Behavior of Glass |
|
|
|
10 What If the Contact is Too Quick in Glass? |
|
|
79 | (8) |
|
|
|
|
|
79 | (1) |
|
10.2 Effect of Loading Rate on Nanohardness |
|
|
80 | (1) |
|
10.3 Damage Evolution Mechanism |
|
|
81 | (4) |
|
|
85 | (2) |
|
|
85 | (2) |
|
11 Enhancement in Nanohardness of Glass: Possible? |
|
|
87 | (6) |
|
|
|
|
|
87 | (1) |
|
11.2 Nanomechanical Behavior |
|
|
87 | (3) |
|
|
90 | (3) |
|
|
90 | (3) |
|
12 Energy Issues in Nanoindentation |
|
|
93 | (12) |
|
|
|
|
|
93 | (1) |
|
|
94 | (2) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
12.2.4 Malzbender-With Model |
|
|
95 | (1) |
|
|
96 | (4) |
|
12.3.1 Inelastic Deformation (IED) Parameter |
|
|
99 | (1) |
|
|
100 | (5) |
|
|
101 | (4) |
|
Section 4 Dynamic Contact Behavior of Glass |
|
|
|
13 Dynamic Contact Damage in Glass |
|
|
105 | (12) |
|
|
|
|
|
105 | (1) |
|
13.2 Damage Due to Dynamic Contact |
|
|
106 | (9) |
|
|
115 | (2) |
|
|
115 | (2) |
|
14 Does the Speed of Dynamic Contact Matter? |
|
|
117 | (8) |
|
|
|
|
|
117 | (1) |
|
14.2 Effect of Speed of Dynamic Contacts and Damage Evolution |
|
|
118 | (4) |
|
|
122 | (3) |
|
|
123 | (2) |
|
15 Nanoindentation Inside the Scratch: What Happens? |
|
|
125 | (10) |
|
|
|
|
|
125 | (1) |
|
15.2 Nanoindentation Inside a Scratch Groove |
|
|
125 | (4) |
|
15.3 The Model of Microcracked Solids |
|
|
129 | (2) |
|
|
131 | (4) |
|
|
131 | (4) |
|
Section 5 Static Contact Behavior of Ceramics |
|
|
|
16 Nanomechanical Properties of Ceramics |
|
|
135 | (6) |
|
|
|
|
|
|
135 | (1) |
|
16.2 Nanoindentation Study |
|
|
136 | (1) |
|
16.3 Indentation Size Effect (ISE) in Alumina |
|
|
137 | (1) |
|
|
138 | (3) |
|
|
139 | (2) |
|
17 Does the Contact Rate Matter for Ceramics? |
|
|
141 | (6) |
|
|
|
|
|
|
141 | (1) |
|
17.2 Effect of Loading Rate and "Multiple Micro Pop-in" and "Multiple Micro Pop-out" |
|
|
141 | (4) |
|
|
145 | (2) |
|
|
146 | (1) |
|
18 Nanoscale Contact in Ceramics |
|
|
147 | (8) |
|
|
|
|
|
|
147 | (1) |
|
18.2 Evolutions of Pop-ins |
|
|
148 | (3) |
|
|
151 | (4) |
|
|
152 | (3) |
|
Section 6 Static Behavior of Shock-Deformed Ceramics |
|
|
|
19 Shock Deformation of Ceramics |
|
|
155 | (6) |
|
|
|
|
|
155 | (1) |
|
19.2 Nanoindentation Study |
|
|
155 | (2) |
|
19.3 Occurrence of Pop-ins |
|
|
157 | (1) |
|
19.4 Defects in Shock-Recovered Alumina |
|
|
158 | (1) |
|
|
159 | (2) |
|
|
160 | (1) |
|
20 Nanohardness of Alumina |
|
|
161 | (8) |
|
|
|
|
|
161 | (1) |
|
20.2 Indentation Size Effect of Shocked Alumina |
|
|
161 | (3) |
|
20.3 Deformation of Shocked Alumina |
|
|
164 | (2) |
|
20.4 Micro Pop-ins of Shocked Alumina |
|
|
166 | (1) |
|
|
166 | (3) |
|
|
167 | (2) |
|
21 Interaction of Defects with Nanoindents in Shocked Ceramics |
|
|
169 | (8) |
|
|
|
|
|
169 | (1) |
|
21.2 Indentation Size Effect of Alumina Shocked at High Shock Pressure |
|
|
170 | (2) |
|
21.3 Deformation Due to Shock at High Pressure |
|
|
172 | (2) |
|
|
174 | (3) |
|
|
175 | (2) |
|
22 Effect of Shock Pressure on ISE: A Comparative Study |
|
|
177 | (10) |
|
|
|
|
|
177 | (1) |
|
22.2 Comparison of ISE in Alumina Shocked at 6.5 and 12 GPa |
|
|
177 | (2) |
|
22.3 Shear Stress and Micro Pop-ins |
|
|
179 | (2) |
|
22.4 Comparison of Deformations in Alumina Shocked at 6.5 and 12 GPa |
|
|
181 | (2) |
|
|
183 | (4) |
|
|
183 | (4) |
|
Section 7 Nanoindentation Behavior of Ceramic-Based Composites |
|
|
|
23 Nano-/Micromechanical Properties of C/C and C/C-SiC Composites |
|
|
187 | (6) |
|
|
|
|
|
|
|
187 | (1) |
|
23.2 Nanoindentation Behavior |
|
|
187 | (3) |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
192 | (1) |
|
24 Nanoindentation on Multilayered Ceramic Matrix Composites |
|
|
193 | (8) |
|
|
|
|
|
|
193 | (1) |
|
24.2 Nanomechanical Behavior |
|
|
194 | (4) |
|
24.2.1 Nanoindentation on Lanthanum Phosphate Tape |
|
|
194 | (2) |
|
24.2.2 Nanoindentation on Alumina Tape |
|
|
196 | (2) |
|
|
198 | (3) |
|
|
199 | (2) |
|
25 Nanoindentation of Hydroxyapatite-Based Biocomposites |
|
|
201 | (10) |
|
|
|
|
|
|
|
201 | (1) |
|
25.2 HAp-Calcium Titanate Composite |
|
|
202 | (1) |
|
25.3 HAp-Mullite Composite |
|
|
203 | (2) |
|
|
205 | (6) |
|
|
206 | (5) |
|
Section 8 Nanoindentation Behavior of Functional Ceramics |
|
|
|
26 Nanoindentation of Silicon |
|
|
211 | (6) |
|
|
|
|
211 | (1) |
|
26.2 Nanoindentation Response |
|
|
212 | (3) |
|
|
215 | (2) |
|
|
216 | (1) |
|
27 Nanomechanical Behavior of ZTA |
|
|
217 | (6) |
|
|
|
|
|
|
217 | (1) |
|
27.2 Nanomechanical Behavior |
|
|
218 | (3) |
|
|
221 | (2) |
|
|
222 | (1) |
|
28 Nanoindentation Behavior of Actuator Ceramics |
|
|
223 | (6) |
|
Sujit Kumar Bandyopadhyay |
|
|
|
|
|
|
|
|
|
|
223 | (1) |
|
28.2 Nanoindentation Behavior |
|
|
224 | (1) |
|
28.3 Polarization Behavior |
|
|
225 | (1) |
|
|
226 | (3) |
|
|
227 | (2) |
|
29 Nanoindentation of Magnetoelectric Multiferroic Material |
|
|
229 | (6) |
|
|
|
|
Sujit Kumar Bandyopadhyay |
|
|
|
|
229 | (1) |
|
29.2 Nanoindentation Response |
|
|
229 | (3) |
|
|
232 | (3) |
|
|
232 | (3) |
|
30 Nanoindentation Behavior of Anode-Supported Solid Oxide Fuel Cell |
|
|
235 | (8) |
|
|
|
|
|
|
|
|
235 | (1) |
|
30.2 Nanomechanical Behavior |
|
|
236 | (4) |
|
|
240 | (3) |
|
|
240 | (3) |
|
31 Nanoindentation Behavior of High-Temperature Glass-Ceramic Sealants for Anode-Supported Solid Oxide Fuel Cell |
|
|
243 | (8) |
|
|
|
|
|
|
|
|
243 | (1) |
|
31.2 Preparation of the Sealant Glass-Ceramic |
|
|
244 | (1) |
|
31.3 Nanomechanical Properties |
|
|
244 | (2) |
|
|
246 | (5) |
|
|
247 | (4) |
|
Section 9 Static Contact Behavior of Ceramic Coatings |
|
|
|
32 Nanoindentation on HAp Coating |
|
|
251 | (4) |
|
|
|
|
|
|
251 | (1) |
|
32.2 Influence of Load on Nanohardness and Young's Modulus |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
254 | (1) |
|
33 Weibull Modulus of Ceramic Coating |
|
|
255 | (6) |
|
|
|
|
255 | (1) |
|
33.2 Data Reliability Issues in MIPS-HAp Coatings |
|
|
255 | (2) |
|
|
257 | (4) |
|
|
258 | (3) |
|
34 Anisotropy in Nanohardness of Ceramic Coating |
|
|
261 | (6) |
|
|
|
|
261 | (1) |
|
34.2 Nanohardness Behavior: Anisotropy |
|
|
262 | (2) |
|
|
264 | (3) |
|
|
264 | (3) |
|
35 Fracture Toughness of Ceramic Coating Measured by Nanoindentation |
|
|
267 | (6) |
|
|
|
|
267 | (1) |
|
35.2 Fracture Toughness Behavior |
|
|
267 | (3) |
|
|
270 | (3) |
|
|
271 | (2) |
|
36 Effect of SBF Environment on Nanomechanical and Tribological Properties of Bioceramic Coating |
|
|
273 | (6) |
|
|
|
|
273 | (1) |
|
36.2 Nano-/Micromechanical Behavior |
|
|
273 | (1) |
|
|
274 | (3) |
|
|
277 | (2) |
|
|
278 | (1) |
|
37 Nanomechanical Behavior of Ceramic Coatings Developed by Micro Arc Oxidation |
|
|
279 | (8) |
|
|
|
|
|
|
|
|
|
279 | (1) |
|
37.2 Nanoindentation Study and Reliability Issue |
|
|
280 | (2) |
|
|
282 | (5) |
|
|
283 | (4) |
|
Section 10 Static Contact Behavior of Ceramic Thin Films |
|
|
|
38 Nanoindentation Behavior of Soft Ceramic Thin Films: Mg(OH)2 |
|
|
287 | (6) |
|
|
|
|
|
287 | (1) |
|
38.2 Nanoindentation Study |
|
|
287 | (2) |
|
|
289 | (1) |
|
|
290 | (3) |
|
|
291 | (2) |
|
39 Nanoindentation Study on Hard Ceramic Thin Films: TiN |
|
|
293 | (6) |
|
|
|
|
293 | (1) |
|
39.2 Nanoindentation Study |
|
|
294 | (1) |
|
39.3 Depth Dependent Nanomechanical Behavior |
|
|
295 | (1) |
|
|
296 | (3) |
|
|
297 | (2) |
|
40 Nanoindentation Study on Sputtered Alumina Films for Spacecraft Application |
|
|
299 | (6) |
|
|
|
|
|
|
|
|
|
|
299 | (1) |
|
|
299 | (1) |
|
40.3 Nanomechanical Behavior |
|
|
300 | (2) |
|
|
302 | (3) |
|
|
302 | (3) |
|
41 Nanomechanical Behavior of Metal-Doped DLC Thin Films |
|
|
305 | (10) |
|
|
|
|
|
|
305 | (1) |
|
41.2 Nanoindentation Study |
|
|
306 | (2) |
|
41.3 Nanotribological Study |
|
|
308 | (2) |
|
|
310 | (1) |
|
|
311 | (4) |
|
|
311 | (4) |
|
Section 11 Nanoindentation Behavior on Ceramic-Based Natural Hybrid Nanocomposites |
|
|
|
42 Orientational Effect in Nanohardness of Tooth Enamel |
|
|
315 | (6) |
|
|
|
|
|
315 | (1) |
|
42.2 Nanomechanical Behavior and Energy Issues |
|
|
316 | (2) |
|
|
318 | (1) |
|
|
319 | (2) |
|
|
319 | (2) |
|
43 Slow or Fast Contact: Does it Matter for Enamel? |
|
|
321 | (6) |
|
|
|
|
|
321 | (1) |
|
|
321 | (2) |
|
43.3 Evolution of Micro Pop-in Events |
|
|
323 | (1) |
|
43.4 Loading Rate versus Micro-/Nanostructure |
|
|
324 | (1) |
|
|
325 | (2) |
|
|
326 | (1) |
|
44 Anisotropy of Modulus in Cortical Bone |
|
|
327 | (6) |
|
|
|
|
|
327 | (1) |
|
|
328 | (1) |
|
44.3 Nanomechanical Behavior and Anisotropy |
|
|
329 | (2) |
|
|
331 | (2) |
|
|
331 | (2) |
|
45 Nanoindentation of Fish Scale |
|
|
333 | (8) |
|
|
|
|
|
333 | (1) |
|
|
334 | (1) |
|
45.3 Nanomechanical Behavior |
|
|
335 | (2) |
|
|
337 | (4) |
|
|
337 | (4) |
|
Section 12 Some Unresolved Issues in Nanoindentation |
|
|
|
46 Indentation Size Effect (ISE) and Reverse Indentation Size Effect (RISE) in Nanoindentation |
|
|
341 | (8) |
|
|
|
|
|
|
|
|
341 | (1) |
|
|
342 | (2) |
|
46.2.1 Nanoindentation at High Load |
|
|
342 | (1) |
|
46.2.2 Nanoindentation at Ultralow Load |
|
|
343 | (1) |
|
46.3 ISE and RISE in AIN-SiC Composites |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
347 | (2) |
|
|
347 | (2) |
|
47 Pop-in Issues in Nanoindentation |
|
|
349 | (10) |
|
|
|
|
|
|
|
|
|
|
|
349 | (1) |
|
47.2 What is Known about Pop-ins? |
|
|
349 | (1) |
|
47.3 Pop-ins in Nanoindentation of Brittle Solids |
|
|
350 | (6) |
|
47.3.1 Pop-ins in SLS Glass and Alumina |
|
|
350 | (3) |
|
47.3.2 Why Pop-ins in SLS Glass? |
|
|
353 | (1) |
|
47.3.3 Why Pop-ins in Alumina Ceramic? |
|
|
353 | (1) |
|
47.3.4 Pop-ins in AIN-SiC Composites and Other Natural Biocomposites |
|
|
354 | (2) |
|
47.3.5 Pop-ins in Tooth Enamel |
|
|
356 | (1) |
|
|
356 | (3) |
|
|
357 | (2) |
|
48 Effect of Loading Rate on Nanoindentation Response of Brittle Solids |
|
|
359 | (8) |
|
|
|
|
|
|
|
|
|
|
|
359 | (1) |
|
48.2 Loading Rate Effects in Brittle Solids: SLS Glass and Alumina |
|
|
359 | (5) |
|
48.2.1 Loading Rate Study on SLS Glass |
|
|
361 | (1) |
|
48.2.2 Loading Rate Study on Alumina |
|
|
361 | (1) |
|
48.2.3 Loading Rate Study inside Scratch Groove in SLS Glass |
|
|
362 | (1) |
|
48.2.4 Loading Rate Study on AIN-SiC Composites |
|
|
362 | (1) |
|
48.2.5 Loading Rate Study on Tooth Enamel |
|
|
362 | (2) |
|
|
364 | (3) |
|
|
364 | (3) |
|
49 Measurement of Residual Stress by Nanoindentation Technique |
|
|
367 | (6) |
|
|
|
|
367 | (1) |
|
49.2 Measurement of Residual Stress by Nanoindentation: Concept |
|
|
368 | (1) |
|
49.3 Evaluation of Residual Stress by Nanoindentation of HAp Coating |
|
|
369 | (1) |
|
|
370 | (3) |
|
|
370 | (3) |
|
50 Reliability Issues in Nanoindentation Measurements |
|
|
373 | (8) |
|
|
|
|
373 | (1) |
|
50.2 The Weibull Statistical Distribution |
|
|
374 | (1) |
|
50.3 Weibull Analysis for HAp Coating |
|
|
375 | (2) |
|
50.4 Weibull Analysis for C/C and C/SiC Composites |
|
|
377 | (1) |
|
|
378 | (3) |
|
|
378 | (3) |
|
51 Substrate Effect in Thin Film Measurements |
|
|
381 | (6) |
|
|
|
|
|
|
|
|
|
|
381 | (1) |
|
51.2 Substrate Effect in Nanocomposite DLC Thin Films |
|
|
382 | (1) |
|
51.3 Substrate Effect in Alumina Film |
|
|
383 | (2) |
|
|
385 | (2) |
|
|
385 | (2) |
|
52 Future Scope of Novel Nanoindentation Technique |
|
|
387 | (8) |
|
|
|
|
387 | (1) |
|
52.2 Nanoindentation on Biological Materials and Nanostructures |
|
|
387 | (1) |
|
52.3 In Situ Nanoindentation and Picoindentation |
|
|
388 | (1) |
|
52.4 High Temperature Nanoindentation |
|
|
388 | (1) |
|
52.5 Properties other than Hardness and Modulus: A Direct Measurement |
|
|
388 | (7) |
|
52.5.1 Fracture Toughness |
|
|
389 | (1) |
|
|
389 | (1) |
|
|
390 | (1) |
|
|
390 | (1) |
|
|
391 | (4) |
Conclusion |
|
395 | (8) |
Common Abbreviations |
|
403 | (2) |
Index |
|
405 | |