Muutke küpsiste eelistusi

E-raamat: Nanoindentation of Brittle Solids

(CSIR-Central Glass & Ceramic Research Institute, Kolkata, India),
  • Formaat: 476 pages
  • Ilmumisaeg: 25-Jun-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040071526
  • Formaat - EPUB+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 476 pages
  • Ilmumisaeg: 25-Jun-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040071526

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understanding the Basics of Nanoindentation and Why It Is Important

Contact damage induced brittle fracture is a common problem in the field of brittle solids. In the case of both glass and ceramicsand as it relates to both natural and artificial bio-materialsit has triggered the need for improved fabrication technology and new product development in the industry.







The Nanoindentation Technique Is Especially Dedicated to Brittle Materials



Nanoindentation of Brittle Solids

highlights the science and technology of nanoindentation related to brittle materials, and considers the applicability of the nanoindentation technique. This book provides a thorough understanding of basic contact induced deformation mechanisms, damage initiation, and growth mechanisms. Starting from the basics of contact mechanics and nanoindentation, it considers contact mechanics, addresses contact issues in brittle solids, and explores the concepts of hardness and elastic modulus of a material. It examines a variety of brittle solids and deciphers the physics of deformation and fracture at scale lengths compatible with the microstructural unit block.

Discusses nanoindentation data analysis methods and various nanoindentation techniques Includes nanoindentation results from the authors recent research on natural biomaterials like tooth, bone, and fish scale materials Considers the nanoindentation response if contact is made too quickly in glass Explores energy issues related to the nanoindentation of glass Describes the nanoindentation response of a coarse grain alumina Examines nanoindentation on microplasma sprayed hydroxyapatite coatings







Nanoindentation of Brittle Solids

provides a brief history of indentation, and explores the science and technology of nanoindentation related to brittle materials. It also offers an in-depth discussion of indentation size effect; the evolution of shear induced deformation during indentation and scratches, and includes a collection of related research works.

Arvustused

"This book is written in a very colloquial style and subdivided into many small sections each with a different group of authors The emphasis is very much on the use of pointed indenters to investigate the micro and nano-mechanical properties of brittle materials. The strength of the book is the wide range of brittle materials that the book covers. It also provides the basis upon which the science of nano or instrumented indentation mechanics is based. a convenient reference book for students and researchers in the area of brittle materials."Michael Swain, Biomaterials, The University of Sydney, Australia

"The book covers a wide range of topics and as such can attract a wide variety of the audience. for insight of practical issues that are encountered when dealing with nanoindentation and brittle materials. It can also serve as a valuable source of references in the field."Jiri Nemecek, Czech Technical University in Prague

" a simple but powerful resource for students, researchers and faculty who want to work in areas of emerging materials needs in fields of space, defense, biomedical, etc."Dr. Satyam Priyadarshy, ReIgnite Strategy / Georgetown University

Prologue xxi
Preface xxv
Acknowledgments xxix
About the Authors xxxiii
Contributors xxxvii
Section 1 Contact Mechanics
1 Contact Issues in Brittle Solids
3(10)
Payel Bandyopadhyay
Debkalpa Goswami
Nilormi Biswas
Arjun Dey
Anoop Kumar Mukhopadhyay
1.1 Introduction
3(1)
1.2 Elasticity and Plasticity
3(2)
1.3 Stresses
5(5)
1.4 Conclusions
10(3)
References
10(3)
2 Mechanics of Elastic and Elastoplastic Contacts
13(10)
Manjima Bhattacharya
Arjun Dey
Anoop Kumar Mukhopadhyay
2.1 Introduction
13(1)
2.2 The Different Models
14(4)
2.2.1 The Elastic Indentation Model
14(2)
2.2.2 The Rigid Perfectly Plastic Model
16(1)
2.2.3 The Spherical-Cavity Expansion Model
16(2)
2.2.4 The Elastic and Perfectly Plastic Model
18(1)
2.3 Conclusions
18(5)
References
19(4)
Section 2 Journey towards Nanoindentation
3 Brief History of Indentation
23(8)
Nilormi Biswas
Arjun Dey
Anoop Kumar Mukhopadhyay
3.1 Introduction
23(1)
3.2 How Did It All Happen?
23(1)
3.3 And Then There Was a
23(1)
3.4 Modern Developments: Nineteenth-Century Scenario
24(1)
3.5 Comparison of Techniques
25(1)
3.6 Major Developments beyond 1910
25(1)
3.7 Beyond the Vickers and Knoop Indenters
26(1)
3.8 Conclusions
27(4)
References
27(4)
4 Hardness and Elastic Modulus
31(8)
Nilormi Biswas
Arjun Dey
Anoop Kumar Mukhopadhyay
4.1 Introduction
31(1)
4.2 Conceptual Issues
31(2)
4.3 Beyond the Hertzian Era: Modern Contact Mechanics
33(1)
4.4 The Experimental Issues
33(1)
4.5 Elastic Modulus
33(1)
4.6 Techniques to Determine Elastic Modulus
34(2)
4.7 Conclusions
36(3)
References
37(2)
5 Nanoindentation: Why at All and Where?
39(6)
Arjun Dey
Payel Bandyopadhyay
Nilormi Biswas
Manjima Bhattacharya
Riya Chakraborty
Neelakanta Reddy
Anoop Kumar Mukhopadhyay
5.1 Introduction
39(3)
5.1.1 Depth-Control Mode
39(1)
5.1.2 Location-Control Mode
39(2)
5.1.3 Phase-Control Mode
41(1)
5.2 In Situ Nanoindentation
42(1)
5.3 Conclusions
43(2)
References
43(2)
6 Nanoindentation Data Analysis Methods
45(8)
Manjima Bhattacharya
Arjun Dey
Anoop Kumar Mukhopadhyay
6.1 Introduction
45(2)
6.2 Modeling of the Nanoindentation Process
47(4)
6.2.1 Oliver-Pharr Model
47(2)
6.2.2 Doerner-Nix Model
49(1)
6.2.3 Field-Swain Model
49(1)
6.2.4 Mayo-Nix Model
49(2)
6.3 Conclusions
51(2)
References
52(1)
7 Nanoindentation Techniques
53(4)
Manjima Bhattacharya
Arjun Dey
Anoop Kumar Mukhopadhyay
7.1 Introduction
53(2)
7.1.1 Hardness Analysis
53(2)
7.2 Conclusions
55(2)
References
55(2)
8 Instrumental Details
57(6)
Payel Bandyopadhyay
Arjun Dey
Anoop Kumar Mukhopadhyay
8.1 Introduction
57(1)
8.2 Nanoindenters: Tip Details and Tip Geometries
57(5)
8.3 Conclusions
62(1)
References
62(1)
9 Materials and Measurement Issues
63(16)
Arjun Dey
Riya Chakraborty
Payel Bandyopadhyay
Nilormi Biswas
Manjima Bhattacharya
Saikat Acharya
Anoop Kumar Mukhopadhyay
9.1 Introduction
63(1)
9.2 Materials Studied
63(5)
9.3 Nanoindentation Studies
68(4)
9.3.1 Fischerscope H100-XYp
69(1)
9.3.2 Triboindenter UBI 700
70(1)
9.3.3 Nano Indenter G200
71(1)
9.3.4 The Typical Protocol
71(1)
9.4 The Scratch Tests
72(1)
9.5 Microstructural Characterizations
72(1)
9.6 Conclusions
73(6)
References
73(6)
Section 3 Static Contact Behavior of Glass
10 What If the Contact is Too Quick in Glass?
79(8)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
10.1 Introduction
79(1)
10.2 Effect of Loading Rate on Nanohardness
80(1)
10.3 Damage Evolution Mechanism
81(4)
10.4 Conclusions
85(2)
References
85(2)
11 Enhancement in Nanohardness of Glass: Possible?
87(6)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
11.1 Introduction
87(1)
11.2 Nanomechanical Behavior
87(3)
11.3 Conclusions
90(3)
References
90(3)
12 Energy Issues in Nanoindentation
93(12)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
12.1 Introduction
93(1)
12.2 Energy Models
94(2)
12.2.1 Lawn-Howes Model
94(1)
12.2.2 Sakai Model
95(1)
12.2.3 Cheng-Cheng Model
95(1)
12.2.4 Malzbender-With Model
95(1)
12.3 Energy Calculation
96(4)
12.3.1 Inelastic Deformation (IED) Parameter
99(1)
12.4 Conclusions
100(5)
References
101(4)
Section 4 Dynamic Contact Behavior of Glass
13 Dynamic Contact Damage in Glass
105(12)
Payel Bandyopadhyay
Arjun Dey
Anoop Kumar Mukhopadhyay
13.1 Introduction
105(1)
13.2 Damage Due to Dynamic Contact
106(9)
13.3 Conclusions
115(2)
References
115(2)
14 Does the Speed of Dynamic Contact Matter?
117(8)
Payel Bandyopadhyay
Arjun Dey
Anoop Kumar Mukhopadhyay
14.1 Introduction
117(1)
14.2 Effect of Speed of Dynamic Contacts and Damage Evolution
118(4)
14.3 Conclusions
122(3)
References
123(2)
15 Nanoindentation Inside the Scratch: What Happens?
125(10)
Payel Bandyopadhyay
Arjun Dey
Anoop Kumar Mukhopadhyay
15.1 Introduction
125(1)
15.2 Nanoindentation Inside a Scratch Groove
125(4)
15.3 The Model of Microcracked Solids
129(2)
15.4 Conclusions
131(4)
References
131(4)
Section 5 Static Contact Behavior of Ceramics
16 Nanomechanical Properties of Ceramics
135(6)
Riya Chakraborty
Manjima Bhattacharya
Arjun Dey
Anoop Kumar Mukhopadhyay
16.1 Introduction
135(1)
16.2 Nanoindentation Study
136(1)
16.3 Indentation Size Effect (ISE) in Alumina
137(1)
16.4 Conclusions
138(3)
References
139(2)
17 Does the Contact Rate Matter for Ceramics?
141(6)
Manjima Bhattacharya
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
17.1 Introduction
141(1)
17.2 Effect of Loading Rate and "Multiple Micro Pop-in" and "Multiple Micro Pop-out"
141(4)
17.3 Conclusions
145(2)
References
146(1)
18 Nanoscale Contact in Ceramics
147(8)
Manjima Bhattacharya
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
18.1 Introduction
147(1)
18.2 Evolutions of Pop-ins
148(3)
18.3 Conclusions
151(4)
References
152(3)
Section 6 Static Behavior of Shock-Deformed Ceramics
19 Shock Deformation of Ceramics
155(6)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
19.1 Introduction
155(1)
19.2 Nanoindentation Study
155(2)
19.3 Occurrence of Pop-ins
157(1)
19.4 Defects in Shock-Recovered Alumina
158(1)
19.5 Conclusions
159(2)
References
160(1)
20 Nanohardness of Alumina
161(8)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
20.1 Introduction
161(1)
20.2 Indentation Size Effect of Shocked Alumina
161(3)
20.3 Deformation of Shocked Alumina
164(2)
20.4 Micro Pop-ins of Shocked Alumina
166(1)
20.5 Conclusions
166(3)
References
167(2)
21 Interaction of Defects with Nanoindents in Shocked Ceramics
169(8)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
21.1 Introduction
169(1)
21.2 Indentation Size Effect of Alumina Shocked at High Shock Pressure
170(2)
21.3 Deformation Due to Shock at High Pressure
172(2)
21.4 Conclusions
174(3)
References
175(2)
22 Effect of Shock Pressure on ISE: A Comparative Study
177(10)
Riya Chakraborty
Arjun Dey
Anoop Kumar Mukhopadhyay
22.1 Introduction
177(1)
22.2 Comparison of ISE in Alumina Shocked at 6.5 and 12 GPa
177(2)
22.3 Shear Stress and Micro Pop-ins
179(2)
22.4 Comparison of Deformations in Alumina Shocked at 6.5 and 12 GPa
181(2)
22.5 Conclusions
183(4)
References
183(4)
Section 7 Nanoindentation Behavior of Ceramic-Based Composites
23 Nano-/Micromechanical Properties of C/C and C/C-SiC Composites
187(6)
Soumya Sarkar
Arjun Dey
Probal Kumar Das
Anil Kumar
Anoop Kumar Mukhopadhyay
23.1 Introduction
187(1)
23.2 Nanoindentation Behavior
187(3)
23.3 Energy Calculation
190(1)
23.4 Conclusions
191(2)
References
192(1)
24 Nanoindentation on Multilayered Ceramic Matrix Composites
193(8)
Sadanand Sarapure
Arnab Sinha
Arjun Dey
Anoop Kumar Mukhopadhyay
24.1 Introduction
193(1)
24.2 Nanomechanical Behavior
194(4)
24.2.1 Nanoindentation on Lanthanum Phosphate Tape
194(2)
24.2.2 Nanoindentation on Alumina Tape
196(2)
24.3 Conclusions
198(3)
References
199(2)
25 Nanoindentation of Hydroxyapatite-Based Biocomposites
201(10)
Shekhar Nath
Arjun Dey
Prafulla K. Mallik
Bikramjit Basu
Anoop Kumar Mukhopadhyay
25.1 Introduction
201(1)
25.2 HAp-Calcium Titanate Composite
202(1)
25.3 HAp-Mullite Composite
203(2)
25.4 Conclusions
205(6)
References
206(5)
Section 8 Nanoindentation Behavior of Functional Ceramics
26 Nanoindentation of Silicon
211(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
26.1 Introduction
211(1)
26.2 Nanoindentation Response
212(3)
26.3 Conclusions
215(2)
References
216(1)
27 Nanomechanical Behavior of ZTA
217(6)
Sadanand Sarapure
Arnab Sinha
Arjun Dey
Anoop Kumar Mukhopadhyay
27.1 Introduction
217(1)
27.2 Nanomechanical Behavior
218(3)
27.3 Conclusions
221(2)
References
222(1)
28 Nanoindentation Behavior of Actuator Ceramics
223(6)
Sujit Kumar Bandyopadhyay
A. K. Himanshu
Pintu Sen
Tripurari Prasad Sinha
Riya Chakraborty
Arjun Dey
Payel Bandyopadhyay
Anoop Kumar Mukhopadhyay
28.1 Introduction
223(1)
28.2 Nanoindentation Behavior
224(1)
28.3 Polarization Behavior
225(1)
28.4 Conclusions
226(3)
References
227(2)
29 Nanoindentation of Magnetoelectric Multiferroic Material
229(6)
Pintu Sen
Arjun Dey
Anoop Kumar Mukhopadhyay
Sujit Kumar Bandyopadhyay
A. K. Himanshu
29.1 Introduction
229(1)
29.2 Nanoindentation Response
229(3)
29.3 Conclusions
232(3)
References
232(3)
30 Nanoindentation Behavior of Anode-Supported Solid Oxide Fuel Cell
235(8)
Rajendra Nath Basu
Tapobrata Dey
Prakash C. Ghosh
Manaswita Bose
Arjun Dey
Anoop Kumar Mukhopadhyay
30.1 Introduction
235(1)
30.2 Nanomechanical Behavior
236(4)
30.3 Conclusions
240(3)
References
240(3)
31 Nanoindentation Behavior of High-Temperature Glass-Ceramic Sealants for Anode-Supported Solid Oxide Fuel Cell
243(8)
Rajendra Nath Basu
Saswati Ghosh
A. Das Sharma
P. Kundu
Arjun Dey
Anoop Kumar Mukhopadhyay
31.1 Introduction
243(1)
31.2 Preparation of the Sealant Glass-Ceramic
244(1)
31.3 Nanomechanical Properties
244(2)
31.4 Conclusions
246(5)
References
247(4)
Section 9 Static Contact Behavior of Ceramic Coatings
32 Nanoindentation on HAp Coating
251(4)
Arjun Dey
Payel Bandyopadhyay
Nil Ratan Bandyopadhyay
Anoop Kumar Mukhopadhyay
32.1 Introduction
251(1)
32.2 Influence of Load on Nanohardness and Young's Modulus
251(3)
32.3 Conclusions
254(1)
References
254(1)
33 Weibull Modulus of Ceramic Coating
255(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
33.1 Introduction
255(1)
33.2 Data Reliability Issues in MIPS-HAp Coatings
255(2)
33.3 Conclusions
257(4)
References
258(3)
34 Anisotropy in Nanohardness of Ceramic Coating
261(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
34.1 Introduction
261(1)
34.2 Nanohardness Behavior: Anisotropy
262(2)
34.3 Conclusions
264(3)
References
264(3)
35 Fracture Toughness of Ceramic Coating Measured by Nanoindentation
267(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
35.1 Introduction
267(1)
35.2 Fracture Toughness Behavior
267(3)
35.3 Conclusions
270(3)
References
271(2)
36 Effect of SBF Environment on Nanomechanical and Tribological Properties of Bioceramic Coating
273(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
36.1 Introduction
273(1)
36.2 Nano-/Micromechanical Behavior
273(1)
36.3 Tribological Study
274(3)
36.4 Conclusions
277(2)
References
278(1)
37 Nanomechanical Behavior of Ceramic Coatings Developed by Micro Arc Oxidation
279(8)
Arjun Dey
R. Lima Rani
Hari Krishna Thota
A. Rajendra
Anand Kumar Sharma
Payel Bandyopadhyay
Anoop Kumar Mukhopadhyay
37.1 Introduction
279(1)
37.2 Nanoindentation Study and Reliability Issue
280(2)
37.3 Conclusions
282(5)
References
283(4)
Section 10 Static Contact Behavior of Ceramic Thin Films
38 Nanoindentation Behavior of Soft Ceramic Thin Films: Mg(OH)2
287(6)
Pradip Sekhar Das
Arjun Dey
Anoop Kumar Mukhopadhyay
38.1 Introduction
287(1)
38.2 Nanoindentation Study
287(2)
38.3 Energy Calculation
289(1)
38.4 Conclusions
290(3)
References
291(2)
39 Nanoindentation Study on Hard Ceramic Thin Films: TiN
293(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
39.1 Introduction
293(1)
39.2 Nanoindentation Study
294(1)
39.3 Depth Dependent Nanomechanical Behavior
295(1)
39.4 Conclusions
296(3)
References
297(2)
40 Nanoindentation Study on Sputtered Alumina Films for Spacecraft Application
299(6)
J. Neelakanta Reddy
N. Sridhara
V. Sasidhara Rao
Anju M. Pillai
Anand Kumar Sharma
V. R. Reddy
Anoop Kumar Mukhopadhyay
Arjun Dey
40.1 Introduction
299(1)
40.2 Optical Behavior
299(1)
40.3 Nanomechanical Behavior
300(2)
40.4 Conclusions
302(3)
References
302(3)
41 Nanomechanical Behavior of Metal-Doped DLC Thin Films
305(10)
Arjun Dey
Rajib Paul
A. K. Pal
Anoop Kumar Mukhopadhyay
41.1 Introduction
305(1)
41.2 Nanoindentation Study
306(2)
41.3 Nanotribological Study
308(2)
41.4 Adhesion Mechanisms
310(1)
41.5 Conclusions
311(4)
References
311(4)
Section 11 Nanoindentation Behavior on Ceramic-Based Natural Hybrid Nanocomposites
42 Orientational Effect in Nanohardness of Tooth Enamel
315(6)
Nilormi Biswas
Arjun Dey
Anoop Kumar Mukhopadhyay
42.1 Introduction
315(1)
42.2 Nanomechanical Behavior and Energy Issues
316(2)
42.3 Micro Pop-in Events
318(1)
42.4 Conclusions
319(2)
References
319(2)
43 Slow or Fast Contact: Does it Matter for Enamel?
321(6)
Nilormi Biswas
Arjun Dey
Anoop Kumar Mukhopadhyay
43.1 Introduction
321(1)
43.2 Loading Rate Effect
321(2)
43.3 Evolution of Micro Pop-in Events
323(1)
43.4 Loading Rate versus Micro-/Nanostructure
324(1)
43.5 Conclusions
325(2)
References
326(1)
44 Anisotropy of Modulus in Cortical Bone
327(6)
Arjun Dey
Himel Chakraborty
Anoop Kumar Mukhopadhyay
44.1 Introduction
327(1)
44.2 Microstructure
328(1)
44.3 Nanomechanical Behavior and Anisotropy
329(2)
44.4 Conclusions
331(2)
References
331(2)
45 Nanoindentation of Fish Scale
333(8)
Arjun Dey
Himel Chakraborty
Anoop Kumar Mukhopadhyay
45.1 Introduction
333(1)
45.2 Microstructure
334(1)
45.3 Nanomechanical Behavior
335(2)
45.4 Conclusions
337(4)
References
337(4)
Section 12 Some Unresolved Issues in Nanoindentation
46 Indentation Size Effect (ISE) and Reverse Indentation Size Effect (RISE) in Nanoindentation
341(8)
Arjun Dey
Devashish Kaushik
Nilormi Biswas
Saikat Acharya
Riya Chakraborty
Anoop Kumar Mukhopadhyay
46.1 Introduction
341(1)
46.2 ISE in HAp Coating
342(2)
46.2.1 Nanoindentation at High Load
342(1)
46.2.2 Nanoindentation at Ultralow Load
343(1)
46.3 ISE and RISE in AIN-SiC Composites
344(1)
46.4 ISE in Dentin
345(1)
46.5 ISE in SLS Glass
346(1)
46.6 Conclusions
347(2)
References
347(2)
47 Pop-in Issues in Nanoindentation
349(10)
Riya Chakraborty
Arjun Dey
Manjima Bhattacharya
Nilormi Biswas
Jyoti Kumar Sharma
Devashish Kaushik
Payel Bandyopadhyay
Saikat Acharya
Anoop Kumar Mukhopadhyay
47.1 Introduction
349(1)
47.2 What is Known about Pop-ins?
349(1)
47.3 Pop-ins in Nanoindentation of Brittle Solids
350(6)
47.3.1 Pop-ins in SLS Glass and Alumina
350(3)
47.3.2 Why Pop-ins in SLS Glass?
353(1)
47.3.3 Why Pop-ins in Alumina Ceramic?
353(1)
47.3.4 Pop-ins in AIN-SiC Composites and Other Natural Biocomposites
354(2)
47.3.5 Pop-ins in Tooth Enamel
356(1)
47.4 Conclusions
356(3)
References
357(2)
48 Effect of Loading Rate on Nanoindentation Response of Brittle Solids
359(8)
Riya Chakraborty
Arjun Dey
Nilormi Biswas
Manjima Bhattacharya
Payel Bandyopadhyay
Jyoti Kumar Sharma
Devashish Kaushik
Saikat Acharya
Anoop Kumar Mukhopadhyay
48.1 Introduction
359(1)
48.2 Loading Rate Effects in Brittle Solids: SLS Glass and Alumina
359(5)
48.2.1 Loading Rate Study on SLS Glass
361(1)
48.2.2 Loading Rate Study on Alumina
361(1)
48.2.3 Loading Rate Study inside Scratch Groove in SLS Glass
362(1)
48.2.4 Loading Rate Study on AIN-SiC Composites
362(1)
48.2.5 Loading Rate Study on Tooth Enamel
362(2)
48.3 Conclusions
364(3)
References
364(3)
49 Measurement of Residual Stress by Nanoindentation Technique
367(6)
Arjun Dey
Anoop Kumar Mukhopadhyay
49.1 Introduction
367(1)
49.2 Measurement of Residual Stress by Nanoindentation: Concept
368(1)
49.3 Evaluation of Residual Stress by Nanoindentation of HAp Coating
369(1)
49.4 Conclusions
370(3)
References
370(3)
50 Reliability Issues in Nanoindentation Measurements
373(8)
Arjun Dey
Anoop Kumar Mukhopadhyay
50.1 Introduction
373(1)
50.2 The Weibull Statistical Distribution
374(1)
50.3 Weibull Analysis for HAp Coating
375(2)
50.4 Weibull Analysis for C/C and C/SiC Composites
377(1)
50.5 Conclusions
378(3)
References
378(3)
51 Substrate Effect in Thin Film Measurements
381(6)
Arjun Dey
I. Neelakanta Reddy
N. Sridhara
Anju M. Pillai
Anand Kumar Sharma
Rajib Paul
A. K. Pal
Anoop Kumar Mukhopadhyay
51.1 Introduction
381(1)
51.2 Substrate Effect in Nanocomposite DLC Thin Films
382(1)
51.3 Substrate Effect in Alumina Film
383(2)
51.4 Conclusions
385(2)
References
385(2)
52 Future Scope of Novel Nanoindentation Technique
387(8)
Arjun Dey
Anoop Kumar Mukhopadhyay
52.1 Introduction
387(1)
52.2 Nanoindentation on Biological Materials and Nanostructures
387(1)
52.3 In Situ Nanoindentation and Picoindentation
388(1)
52.4 High Temperature Nanoindentation
388(1)
52.5 Properties other than Hardness and Modulus: A Direct Measurement
388(7)
52.5.1 Fracture Toughness
389(1)
52.5.2 Residual Stress
389(1)
52.5.3 Adhesion Strength
390(1)
52.5.4 Nanofatigue
390(1)
References
391(4)
Conclusion 395(8)
Common Abbreviations 403(2)
Index 405
Dr. Arjun Dey is a scientist at the Thermal System Group of ISRO Satellite Centre, Bangalore. Dr. Dey earned a bachelors in mechanical engineering in 2003, followed by a masters in materials engineering from Bengal Engineering and Science University, Shibpur, Howrah in 2007. While working at CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, he earned his doctoral degree in materials science and engineering in 2011 from the Bengal Engineering and Science University, Shibpur, Howrah. The research work of Dr. Dey culminated in more than 120 publications to his credit.







Dr. Anoop Kumar Mukhopadhyay

is a chief scientist and head of the Mechanical Property Evaluation Section in the Materials Characterization Division of CSIR-CGCRI, Kolkata, India. He also heads the Program Management Division and Business Development Group of CSIR-CGCRI. He obtained his bachelors degree with honours in physics from Kalyani University, Kalyani in 1978 followed by a masters degree in physics from Jadavpur University, Kolkata in 1982. Dr. Mukhopadhyay has written nearly 200 publications including SCI journals, national and international conference proceedings. He has written seven patents and published three book chapters.