Muutke küpsiste eelistusi

E-raamat: Nanomaterials in Rocket Propulsion Systems

Edited by (Professor and Vice-Dean, School of Astronautics, Northwestern Polytechnical University, Xi-an, China), Edited by (Professor, Noerhwestern Polytechnical University, Xi-an, China), Edited by (Associ), Edited by (Research Fellow, Tel Aviv University, Tel Aviv, Israel)
  • Formaat: EPUB+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 16-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128139097
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 16-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128139097
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nanomaterials in Rocket Propulsion Systems covers the fundamentals of nanomaterials and examines a wide range of innovative applications, presenting the current state-of-the-art in the field. Opening with a chapter on nano-sized energetic materials, the book examines metal nanoparticles-based fuels, ballistic modifiers, stabilizers and catalysts as the components of rocket propellants. Hydrogen storage materials for rocket propulsion based on nanotubes are then discussed, as are nano-porous materials and metal organic frameworks, nano-gelled propellants, nano-composite ablators and ceramic nano-composites. Other applications examined include high thermal conductivity metallic nano-composite nozzle liners, nano-emitters for Coulomb propulsion of space-crafts, and highly thermostable nano-ceramics for rocket motors.

The book finishes with coverage of combustion of nano-sized rocket fuels, nano-particles and their combustion in micro- and nano-electromechanical systems (MEMS/NEMS), plasma propulsion and nano-scale physics. Users will find this to be a valuable resource for academic and government institutions, professionals, new researchers and graduate students working in the application of nanomaterials in the aerospace industry.

  • Provides a detailed overview of different types of nanomaterials used in rocket propulsion, highlighting different situations in which different materials are used
  • Demonstrates the use of new nanomaterial concepts, allowing for an increase in payload capacity or a decrease in launch mass
  • Explores a range of applications using metal nanopowders, presenting a panorama on cutting-edge, technological developments
Contributors xv
Preface xix
Part 1: Nanomaterials in Rocket Fuels
Chapter 1 The Prospects of Using Nanoenergetic Materials in Solid Rocket Propulsion
3(28)
Vladimir E. Zarko
1 Introduction
3(2)
2 Nanometals in Solid Propellants
5(2)
3 Nano-Oxidizers
7(2)
4 Mechanisms of Nanothermite Reaction
9(3)
5 Nano-Explosives
12(8)
6 Experimental Methods for Characterization of Nanoenergetic Systems
20(2)
7 Concluding Remarks
22(5)
Acknowledgments
27(1)
References
27(4)
Chapter 2 Review on Nanoexplosive Materials
31(50)
Bing Gao
Zhiqiang Qiao
Guangcheng Yang
1 Introduction
33(2)
2 Why Nanoexplosives
35(2)
3 Preparation and Characterization
37(18)
3.1 Methods for the Preparation of Nanoexplosives
37(15)
3.2 Characterizations and Evaluation
52(3)
4 Properties
55(9)
4.1 Sensitivities
55(6)
4.2 Detonation
61(1)
4.3 Thermal Stability
62(2)
5 Challenges Involved
64(2)
6 Conclusion and Outlook
66(2)
Acknowledgments
68(1)
References
68(13)
Chapter 3 Insensitive Energetic Materials Containing Two-Dimensional Nanostructures as Building Blocks
81(32)
Qi-Long Yan
Michael Gozin
Pei-Jin Liu
Guo-Qiang He
1 Introduction
81(2)
2 Graphene-Based Energetic Nanomaterials
83(16)
2.1 Hybrid/Composite Energetic Nanomaterials Based on Graphene
83(4)
2.2 Energetic Metastable Intermolecular Nanocomposites Containing Graphene
87(4)
2.3 Functionalized GO as 2D Energetic Materials
91(8)
3 Carbon-Nitrogen-Based 2D Energetic Structures
99(9)
3.1 Insensitive 2D Carbon Nitride-Related Derivatives
99(5)
3.2 Insensitive Energetic Nitrogen-Rich Coordination Polymers
104(4)
4 Summary
108(1)
Acknowledgments
108(1)
References
109(4)
Chapter 4 Preparation, Characterization, and Application of Superthermites in Solid Propellant
113(38)
Ting An
Wen-Gang Qu
Yan-Jing Yang
Feng-qi Zhao
Qi-Long Yan
1 Introduction
114(1)
2 Experiment Section
115(18)
2.1 Characterization
115(1)
2.2 Preparation and Characterization of Al/PbO by the Ultrasonic Sol-Dipping Method
115(3)
2.3 Preparation and Characterization of Al/PbO Using an Ultrasonic Dispersion Method
118(3)
2.4 Preparation and Characterization of Al/CuO by the Ultrasonic Dispersion Method
121(3)
2.5 Preparation and Characterization of Al/Bi2O3 by the Ultrasonic Dispersion Method
124(5)
2.6 Preparation and Characterization of Al/CuO by Sol-Gel Methods
129(3)
2.7 Characterization of Al/Bi2O3 by Hydrothermal Methods
132(1)
3 The Thermal Behaviors and Decomposition Mechanisms of the Precursors for Al/CuO Superthermite
133(8)
3.1 Structural Evaluation
134(2)
3.2 Thermal Behaviors and Decomposition Mechanisms
136(3)
3.3 Nonisothermal Decomposition Reaction Kinetics
139(2)
4 Compatibility of Superthermite With the Components of DB Propellants
141(4)
4.1 Compatibility Obtained by Using the VST Method
142(1)
4.2 Compatibility Obtained by Using the DSC Method
143(2)
4.3 Comparison of the Compatibility Results Obtained Using Different Methods
145(1)
5 The Effects of Superthermites on the Combustion Properties of DB Propellants
145(3)
5.1 Experimental
146(1)
5.2 Combustion Performance of DB Propellants Containing Superthermites
146(2)
6 Conclusion
148(1)
References
149(2)
Chapter 5 Aluminum Powders for Energetics: Properties and Oxidation Behavior
151(26)
A.A. Gromov
A. Yu. Nalivaiko
V.P. Tarasov
S.V. Zmanovsky
A.N. Arnautov
A.V. Sergienko
K.B. Larionov
1 Introduction
152(1)
2 Al Nanopowder
153(1)
3 Oxidation of Al Powders
154(8)
3.1 Nonisothermal Oxidation
155(5)
3.2 Isothermal Oxidation
160(2)
4 Combustion of Al Powders in Air
162(3)
5 Oxidation of Al Powders in Water
165(5)
6 Al Powder Combustion in Propellants
170(1)
7 Conclusion
171(1)
Acknowledgments
171(1)
References
171(6)
Part 2: Nano-Engineered Propellants and Propulsion
Chapter 6 Nanoenergetic Ingredients to Augment Solid Rocket Propulsion
177(86)
Luigi T. De Luca
1 Background
181(2)
2 Motivations and Objectives
183(1)
3 Historical Excursus in Solid Rocket Propulsion
184(5)
4 Introduction to Nanometals
189(4)
4.1 Ultrafine Versus Nanosized Particles
190(1)
4.2 Energy Excess
191(1)
4.3 First-Generation Versus Advanced nEM
192(1)
5 Studies on Nanoingredients for Solid Rocket Propulsion
193(8)
6 Basic Flame Structure Modified by Aluminum Powder
201(8)
6.1 Burning Surface of Metallized Formulations
202(1)
6.2 µAl Powder: Agglomeration-Controlled Burning
203(1)
6.3 nAl Powder: Aggregation-Controlled Burning
203(2)
6.4 Comparing nAl to µAl Aluminum Powder
205(2)
6.5 Properties Affecting nAl Burning
207(2)
7 Augmented Steady Ballistic Properties
209(35)
7.1 Steady Burning Rate of AP/HTPB/Al Composite Propellants
209(11)
7.2 More Formulations About Steady Burning Rate
220(11)
7.3 Advanced Formulations About Steady Burning Rate
231(9)
7.4 Pressure Exponent
240(1)
7.5 Summary Remarks on Augmented Steady Ballistic Properties
240(4)
8 Delivered Specific Impulse
244(2)
9 Concluding Remarks
246(3)
Acknowledgments
249(1)
References
250(13)
Chapter 7 Performance of Composite Solid Propellant Containing Nanosized Metal Particles
263(36)
WeiQiang Pang
Luigi T. De Luca
Ke Wang
XiaoLong Fu
JunQiang Li
HuiXiang Xu
XueZhong Fan
Huan Li
1 Introduction
265(1)
2 Experimental
266(3)
2.1 Materials and Specimen
266(1)
2.2 Preparation of Propellants
266(1)
2.3 Characterization Methods of Ingredients and Propellants
266(3)
3 Results and Discussion
269(27)
3.1 SEM, Grain Size Distribution, and Thermogravimetry/Differential Thermal Analysis
269(3)
3.2 Rheological and Surface-Interfacial Properties of Different Nanosized Metal/Binder Slurries
272(4)
3.3 Effects of Different Nanosized Metal Particles on the Rheological Properties of HTPB Composite Propellant
276(6)
3.4 Effects of Different nAl Particles on the Properties of Fuel-Rich Solid Propellant
282(7)
3.5 Effects of nAl Powder on NEPE Solid Propellant Properties
289(2)
3.6 Hazardous Properties of nAl/RDX Mixtures
291(5)
4 Conclusions
296(1)
Acknowledgments
296(1)
References
297(2)
Chapter 8 Effect of Ammonium Perchlorate Particle Size on Flow, Ballistic, and Mechanical Properties of Composite Propellant
299(64)
Jauhari Ashish
Gharde Swaroop
Kandasubramanian Balasubramanian
1 Introduction
300(5)
2 Theoretical Background
305(19)
2.1 Propellants
306(1)
2.2 Classification of Solid Rocket Propellants
307(1)
2.3 Solid Propellant Characteristics
307(1)
2.4 Solid Rocket Motor
308(1)
2.5 Composite Propellant
309(1)
2.6 Ingredients of Composite Propellant
310(9)
2.7 Physical and Flow Properties of Ammonium Perchlorate
319(1)
2.8 Ballistic Properties of Composite Propellant
319(2)
2.9 Mechanical Properties of Composite Propellant
321(3)
3 Experimental Procedures
324(12)
3.1 Selection of Ammonium Perchlorate Test Powder
324(1)
3.2 Measurement of physical Properties of Ammonium Perchlorate Powder
324(4)
3.3 Measurement of Flow Properties of Ammonium Perchlorate Powder
328(4)
3.4 Effect of Flow Additives on Flow Properties of Ammonium Perchlorate
332(2)
3.5 Effect of Flow Additives on Burn Rate and Mechanical Properties of Composite Propellant
334(2)
3.6 Effect of Ammonium Perchlorate Particle Size on Burn Rate and Mechanical Properties of Composite Propellant
336(1)
4 Results and Discussion
336(22)
4.1 Ammonium Perchlorate Powder Physical Property Characterization
337(8)
4.2 Ammonium Perchlorate Powder Flow Property Measurement
345(5)
4.3 Effect of Flow Additives on Flow Properties of Ammonium Perchlorate
350(1)
4.4 Effect of Flow Additives on Burn Rate and Mechanical Properties of Composite Propellant
351(2)
4.5 Effect of Ammonium Perchlorate Particle Size on Ballistic and Mechanical Properties
353(5)
5 Conclusion
358(2)
References
360(3)
Chapter 9 New Developments in Composite Propellants Catalysis: From Nanoparticles to Metallo-Polyurethanes
363(26)
Carlos Hortelano
Jose Luis de la Fuente
1 Introduction
363(3)
2 Nano-TMOs as BR Catalysts
366(10)
2.1 Nano-Fe2O3
367(3)
2.2 Nano-CuO
370(4)
2.3 Nano-TiO2
374(2)
3 Metallo-PUs as BR Catalysts
376(8)
4 Conclusion
384(1)
Acknowledgments
384(1)
References
385(4)
Chapter 10 Chemical Propulsion of Microthrusters
389(14)
Ruiqi Shen
Yinghua Ye
Chengling Wang
Chengbo Ru
Ji Dai
1 Introduction
389(2)
2 Solid Propellants for Microhrusters
391(9)
2.1 Energy Characteristics of Thermites
391(2)
2.2 Synthesis of Nano-Al/CuO Thermite
393(4)
2.3 Microthruster Charged by Al/CuO-Based Propellant
397(3)
3 Conclusion
400(1)
References
401(2)
Chapter 11 Integrated Micropropulsion Systems With Nanoenergetic Propellants
403(20)
Mkhitar Hobosyan
Sergey E. Lyshevski
Karen S. Martirosyan
1 Introduction
403(2)
2 Solid Propellants
405(2)
3 Nanoenergetic Materials
407(2)
4 Nanoenergetic Gas Generator Formulations for Microthrusters
409(2)
5 Design and 3D Printing of Microthrusters and Microthruster Arrays
411(1)
6 Dispensing and Encapsulation of Nanoenergetic Materials
412(1)
7 Microthruster Testing and Thrust Evaluation
413(2)
8 Sensing and Communication Technologies in Aerial Vehicles With Microthrusters
415(3)
9 Conclusions
418(1)
References
418(5)
Part 3: Nanomaterials for Rocket Motors Hardware
Chapter 12 Polymer Nanocomposite Ablative Technologies for Solid Rocket Motors
423(72)
Joseph H. Koo
Jon Langston
1 Introduction
425(1)
2 Solid Rocket Motor Nozzle and Insulation Materials
426(5)
2.1 Behavior of Ablative Materials
429(2)
3 Advanced Polymer Nanocomposite Ablatives
431(18)
3.1 Polymer Nanocomposites for SRM Nozzles
431(5)
3.2 Polymer Nanocomposites for SRM Internal Insulation
436(13)
4 New Sensing Technology
449(29)
4.1 In Situ Ablation Recession and Thermal Sensor
449(15)
4.2 Char Strength Sensor
464(14)
5 Technologies Needed to Advance Polymer Nanocomposite Ablative Research
478(9)
5.1 Thermophysical Properties Characterization
478(3)
5.2 Ablation Modeling
481(6)
6 Overall Summary and Conclusion
487(1)
Acknowledgments
487(1)
References
488(7)
Chapter 13 Nanotube/Nanowire-Toughened Carbon/Carbon Composites and Their Coatings
495(34)
Qiang Song
Lei Zhuang
Qian-Gang Fu
1 Introduction
495(14)
1.1 Fabrication of CNT-Carbon Fiber Multiscaled Preforms
496(5)
1.2 Mechanical Properties of CNT-C/C Composites
501(4)
1.3 Oxidation and Ablation Behavior of CNT-C/C Composites
505(4)
2 Nanoparticle-Toughened Coatings on C/C Composites
509(3)
3 Carbon Nanotube-Toughened Coatings on C/C Composites
512(2)
4 SiC Nanowire-Toughened Coatings on C/C Composites
514(5)
5 SiC Nanowire-Toughened C/C-UHTC Composites
519(3)
6 HfC Nanowire-Toughened Coatings on C/C Composites
522(2)
7 Summary
524(1)
References
524(5)
Chapter 14 An Introduction to Ablative Materials and High-Temperature Testing Protocols
529(22)
Marco Rallini
Maurizio Natali
Luigi Torre
1 An Introduction to Thermal Protection System Materials
529(2)
2 Polymeric Ablatives
531(5)
2.1 An Introduction to Thermophysical Characterization
535(1)
3 Advanced Testing Techniques for TPS Materials
536(9)
3.1 The Oxy-Acetylene Torch
536(4)
3.2 An Alternative to the OAT: the Simulated Solid Rocket Motor
540(2)
3.3 A solid Rocket Motor-Based Test Bed
542(3)
References
545(6)
Author Index 551(2)
Subject Index 553
Index
Qi-Long Yan is a postdoctoral research fellow at Tel Aviv University, Israel. He has previously worked as an Assistant Professor at Xian Modern Chemistry Research Institute, Xian, China. His research is on the investigation of energetic complexes based on carbon nanomaterials and used in solid propellants and high explosives. Guo-Qiang He is a Professor at Northwestern Polytechnical University, Xi-an, China, and Director of the Shaanxi Institute of Aeronautics. He is a member of the academic committee of the Chinese Hypersonic Technology Research and Development Center, and his research interests are aerospace propulsion applications, including rocket engine technology. Pei-Jin Liu is Professor and Vice-Dean of the School of Astronautics at Northwestern Polytechnical University, Xi-an, China. He has published two books on astronautic propulsion and combustion and conducts research on rocket propulsion, combustion diagnostics and instability. Michael Gozin is Associate Professor of Chemistry at Tel Aviv University, Israel. His research activity focuses on the preparation and characterization of novel nitrogen-rich materials for fire-extinguishing and other applications, preparation of new materials for therapy and biomedical imaging, and development of new chemosensors for forensic and other applications.